Spelling suggestions: "subject:"1species barrier"" "subject:"3species barrier""
1 |
Roles of protein sequence and cell environment in cross-species prion transmission and amyloid interferenceBruce, Kathryn Lyn 27 August 2014 (has links)
Proteinaceous infectious particles, termed 'prions' are self-perpetuating protein isoforms that transmit neurodegenerative diseases in mammals and phenotypic traits in yeast. Each conformational variant of a prion protein is faithfully propagated to a homologous protein in the same cell environment. However, a reduction in the efficiency of prion transmission between different species is often observed and is termed "species barrier". Prion transmission to a heterologous protein may, in some cases, permanently change the structure of the prion variant, and divergent proteins may interfere with prion propagation in a species-specific manner. To identify the importance of both protein sequence and the cell environment on prion interference and cross-species transmission, we employed heterologous Sup35 proteins from three Saccharomyces sensu stricto species: Saccharomyces cerevisiae (Sc), Saccharomyces paradoxus (Sp), and Saccharomyces bayanus (Sb). We performed our experiments in two different cell environments (Sc and Sp). Our data show that Sup35 from one species can form a prion in another, and we employed a transfection procedure to perform cross-species transfer of the prion. Using a shuffle procedure, we demonstrate that the specificity of prion transmission is determined by the protein itself rather than the cell environment. Interestingly, we noted that variant-specific prion patterns can be altered irreversibly during cross-species transmission through S. bayanus module II. We further show that prion interference does not always correlate with cross-species prion transmission, and the identity of particular regions or even a specific amino acid, rather than the overall level of PrD homology is crucial for determining cross-species transmission and interference. Lastly we provide evidence to suggest that prion interference is specific to the cell environment.
|
2 |
Structure and Polymorphism of Y145Stop Prion Protein Amyloid Fibrils Studied by Magic-Angle Spinning Solid-State NMRTheint, Theint 16 June 2017 (has links)
No description available.
|
3 |
INVESTIGATING THE ROLE OF PRION PROTEIN POLYMORPHISMS ON PRION PATHOGENESISSaijo, Eri 01 January 2012 (has links)
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are lethal and infectious neurodegenerative diseases of humans and animals. The misfolding of the normal, or cellular isoform of the prion protein (PrPC) into the abnormal disease-associated isoform of PrP (PrPSc) could change the properties of PrP, consequently, PrPSc has lethal infectivity to transmit diseases. The proteinaceous infectious particle consisting mainly of PrPSc is called prion. Transmissibility of prions is strongly influenced by multiple factors including PrP polymorphisms, species barriers (PrP sequence specificity) and prion strains (conformational specificity) by unknown mechanisms. Even though the ability of prions to cross a species barrier has been recognized, the precise mechanisms of interspecies prion transmission remain unclear.
This dissertation research was conducted in order to learn more about the molecular mechanisms of conversion, propagation and transmission of PrPSc; about determinants of genetic susceptibility to infection in prion diseases; and about understanding those mechanisms, which might govern the zoonotic potential of prion diseases.
First, we investigated the transmissibility risk of multiple strains of Chronic Wasting Disease, which is a cervid TSE, with humanized transgenic mice and showed that the transmission barriers between cervid and the humanized mice are high. Next, the structural factors underlying the species barrier of prion diseases were studied using cell culture systems by systematically introducing amino acid substitutions in the regions of PrP, where the most divergences of different PrP species are recognized. Thirdly, we investigated the effects of the genetic susceptibility to prions as well as conversion kinetics and properties of PrPSc using Tg mice expressing ovine PrP polymorphism (OvPrP) at codon 136 either alanine (A) or valine (V). The templating characteristics of OvPrPSc-V136 were dominant over OvPrPSc-A136 under co-expressions of OvPrPC-A136 and OvPrPC-V136. Finally, the function of PrP was studied in relation to the pathogenesis of Alzheimer’s disease.
These studies demonstrated that the conformational compatibility between PrPC and PrPSc contributed to the conversion kinetics and species barrier. We concluded that the conformational compatibility of PrPC to PrPSc is controlled not only by the PrP sequence specificity but also by the tertiary structure of PrPC.
|
4 |
Prion species barrier at the short phylogenetic distances in the yeast modelChen, Buxin 07 July 2008 (has links)
Prions are self-perpetuating and, in most cases, aggregation-prone protein isoforms that transmit neurodegenerative diseases in mammals and control heritable traits in yeast. Prion conversion requires a very high level of identity of the interacting protein sequences. Decreased transmission of the prion state between divergent proteins is termed "species barrier" and was thought to occur due to the inability of divergent prion proteins to co-aggregate. Species barrier can be overcome in cross-species infections, for example from "mad cows" to humans. We studied the counterparts of yeast prion protein Sup35, originated from three different species of the Saccharomyces sensu stricto group and exhibiting the range of prion domain divergence that overlaps with the range of divergence observed among distant mammalian species. Heterologous Sup35 proteins co-aggregated in S. cerevisiae cells. However, in vivo cross-species prion conversion was decreased and in vitro polymerization was cross-inhibited in at least some heterologous combinations, thus demonstrating the existence of prion species barrier. Our data suggests that species-specificity of prion transmission is controlled at the level of conformational transition rather than co-aggregation. We have shown the Sup35 prion domain is sufficient for the species barrier among the S. sensu stricto species, and constructed SUP35 chimeric prion domains, combining the subregions of various origins Our data demonstrated in different cross-species combinations, different modules of prion domain play a crucial role in the controlling of species-specificity of prion transmission. One essential amino acid position has been identified in S. cerevisiae and S. paradoxus system. Our data support a model suggesting that identity of the short amyloidogenic sequences is crucial for the species barrier. Sup35 originated from three different species of the S. sensu stricto group were capable of forming a prion in S. cerevisiae. However, it was not known whether they are capable of generating and maintaining the prion state in the homologous cell environment. We have constructed the S. paradoxus and S. bayanus strains with appropriate markers, and we were able to demonstrate de novo [PSI+] formation in S. paradoxus but not in S. bayanus. Our data show that [PSI+] formation is not a unique property of S. cerevisiae.
|
5 |
Approche multi-échelles (élevage, cellule, -omique) des mécanismes de transmission inter-espèces d’Anaplasma phagocytophilum et de sa circulation chez les bovins / Study of inter-species transmission and intra-cattle herd circulation of Anaplasma phagocytophilum using a multi-scale approach (herd, cell, -omic)Le Corre, Anne-Claire 20 December 2017 (has links)
Anaplasma phagocytophilum est une alpha-protéobactérie à multiplication intracellulaire stricte transmise par les tiques du genre Ixodes sp. Responsable notamment des anaplasmoses granulocytaires bovine et humaine, elle peut également infecter de nombreux mammifères, tels les ruminants sauvages ou les rongeurs. En Europe, plusieurs cycles, encore mal connus, semblent coexister et impliquer des hôtes (réservoirs et victimes) différents. Cela semble être en particulier le cas pour les souches bovines et humaines, conduisant à supposer que les souches bovines ne seraient pas zoonotiques. Du fait de sa localisation intracellulaire in vivo, et plus particulièrement au sein des polynucléaires neutrophiles des hôtes vertébrés, la culture d’A. phagocytophilum au laboratoire expose à d’importantes difficultés méthodologiques. De ce fait, la compréhension des relations entre la bactérie et ses hôtes (mammifères et tiques vectrices) n’a conduit à ce jour qu’à un nombre restreint de publications. Cette thèse s’intéresse à ces interactions, que j’ai abordées sciemment à différents niveaux. Dans un premier temps, l’étude épidémiologique menée en troupeau bovin nous a permis de mettre en évidence une diversité génétique importante parmi les souches y circulant, et nous a amenés à formuler l’hypothèse que les bovins pourraient jouer un rôle en tant que réservoirs de l’infection. Différents mécanismes, notamment l’échappement à la réponse immunitaire de l’hôte, l’absence de protection croisée entre souches et peut-être la sanctuarisation de l’infection dans des cellules niches, permettraient d’expliquer ce rôle de réservoir. L’étude de l’infection des cellules endothéliales, effectuée afin d’explorer leur rôle en tant que cellules niches d’une part et leur implication dans la barrière d’espèce d’autre part, a conduit à envisager que ces cellules pourraient permettre le passage des bactéries vers le courant sanguin, mais a priori pas leur multiplication. Afin d’amorcer l’exploration de la réponse transcriptomique d’A. phagocytophilum lors du changement d’hôte (vertébré vs invertébré), nous avons soumis des cultures de cellules de tiques infectées à un choc thermique, ce qui nous a permis de suggérer qu’un nombre restreint de mécanismes transcriptomiques est mis en jeu en réponse au choc thermique induit par le changement d’hôte vertébré/invertébré. Néanmoins, la capacité d’A. phagocytophilum à répondre à un stress thermique plus important est bien maintenue. Les protéines que nous avons identifiées comme les plus différentiellement exprimées au cours de cette étude pourraient s’avérer jouer un rôle préférentiel dans l’infection du vecteur ou du mammifère. La technique du double-hybride en système de levure, expérimentée dans la dernière partie de ce travail, et qui nous a permis de mettre en évidence trois interacteurs pour APH_0032, protéine de la membrane vacuolaire, pourrait s’avérer intéressante pour étudier les interactions de ces protéines vis-à-vis des banques d’ADNc de vertébré et de tique, mais aussi pour explorer le tropisme tissulaire des souches, puisque notre équipe a précédemment mis en évidence le fait qu’un allèle particulier d’APH_0032 est associé aux avortements bovins. . Ces approches complémentaires posent la question des fondements d’une telle variabilité génétique et d’une telle diversité d’hôtes chez une bactérie intracellulaire obligatoire et ouvrent un grand champ de perspectives / Anaplasma phagocytophilum is an obligate intracellular alphaproteobacterium, mainly transmitted by Ixodes ticks. It is the causative agent of bovine and human granulocytic anaplasmosis and can infect various mammalian species, including rodents and wild ruminants. Several epidemiological cycles may coexist in Europe. In particular, human and bovine strains seem to belong to distinct cycles, which leads to the hypothesis that cattle strain are not zoonotic. Due to its intracellular location in vivo inside granulocyte neutrophils, A. phagocytophilum culture is challenging and leads to several methodological difficulties. This explains why few studies have so far been performed in order to explore the interactions between this bacterium and its host species (mammals and ticks). In order to investigate these interactions at different levels, I performed four complementary studies. First, our epidemiological study in cattle herd highlighted the genetic diversity of strains circulating in the herds and challenges the role of cattle as a reservoir for A. phagocytophilum. The infections of endothelial cells that we performed to study the role of these cells as niche cells and/or determinants of species barrier during A. phagocytophilum infection led us to consider that endothelial cells could host A. phagocytophilum during their transmission from dermis to blood, without allowing their multiplication. For studying A. phagocytophilum transcriptomic reactions during the transmission from tick to vertebrate host, we submitted infected tick cells to heat shocks. Our results suggest that few transcriptomic events are induced during this transmission. Nevertheless, A. phagocytophilum is able to respond to non-physiological heat stress. We identified differentially expressed proteins, which could play an important role during tick or mammal infection. The yeast two hybrid analysis allowed us to detect three host cell interactors to APH_0032, an A. phagocytophilum vacuolar membrane protein. This technique could be applied for studying the molecular interactions involving proteins that where differentially expressed during heat shock, for example. Finally, our four complementary studies raise the question of the basis for such genetic variability and host diversity within an obligate intracellular bacterium and open up a wide field of perspectives
|
6 |
Vergleichende Analyse saisonaler, aviärer, porziner und pandemischer Influenzaviren in humanen Lungen- und ZellkulturenWeinheimer, Viola 19 December 2011 (has links)
Das Auftreten des pandemischen H1N1-Influenzavirus 2009 und die kontinuierliche Übertragung hochpathogener H5N1-Viren (HPAIV) auf den Menschen verdeutlichen die Wichtigkeit zoonotischer Übertragungen. Bis heute sind die Restriktion tierpathogener Influenzaviren und die hohe Virulenz der HPAIV im Menschen nicht vollständig geklärt. Verschiedene Modelle wurden zur Studie von Influenzaviren verwendet, u. a. Zelllinien, die jedoch die Komplexität und Zelltypen der humanen Lunge nur unzureichend wiedergeben. Daher wurde ein humanes ex vivo Lungenkulturmodell etabliert in welchem die komplexe Struktur und die verschiedenen Zelltypen der humanen Lunge erhalten bleiben. Mit Hilfe dieses Modells und primären und permanenten humanen Zellen wurden saisonale, pandemische, porzine, HPAIV und niedrigpathogene aviäre Influenzaviren (LPAIV) systematisch hinsichtlich Replikation, Cytokininduktion und Zelltropismus verglichen. HPAIV replizierten wie auch saisonale und pandemische Viren zu hohen Titern, während sich LPAIV und ein porzines Virus kaum vermehrten. Einhergehend mit dem Vorhandensein aviärer Rezeptoren waren LPAIV dennoch fähig Lungenkulturen und Zellen zu infizieren und es fanden sich keine Unterschiede im Vorhandensein und in der Lokalisation viraler Proteine. Die Infektion mit HPAIV und LPAIV führten im Lungenmodell zu einer erhöhten Induktion von IP10, MIP1β, IFNβ und IL1β, während saisonale und pandemische H1N1-Viren nur geringe Cytokinspiegel hervorriefen. Trotz der hier beobachteten Unterschiede in der Replikation und Cytokininduktion infizierten alle Viren überwiegend Typ II Pneumozyten. Dies impliziert, dass sich die gezeigten Unterschiede zwischen saisonalen und aviären Viren nicht durch Unterschiede im Zelltropismus erklären lassen. Die im Rahmen dieser Studie erzielten Ergebnisse korrelieren gut mit klinischen Beobachtungen. Dies verdeutlicht den Wert humaner ex vivo Kulturen um weitere Einblicke in das pathophysiologische Verhalten von Pathogenen zu bekommen. / The emergence of the pandemic H1N1 influenza A virus in 2009 and the continuous threat by highly pathogenic avian H5N1 human infections underlines the importance of zoonotic transmissions. The inability of most animal influenza viruses to replicate efficiently in the human respiratory tract and the high virulence of highly pathogenic avian H5N1 viruses (HPAIV) are still not fully understood. Several models have been used to study influenza virus infections including human cell lines that lack the complexity and cell diversity of the human lung. Therefore, a human lung explant model in which the three-dimensional structure of the human lung is preserved along with the different cell-cell interactions was established. Using this model and commonly used primary and permanent respiratory cells, replication, cytokine induction and cell tropism of human, avian, swine and pandemic 2009 virus was systematically compared. It was shown that HPAIV as well as seasonal and pandemic 2009 viruses replicated to high titers while a low pathogenic avian (LPAIV) or a classical swine virus only replicated inefficiently. However, along with the presence of avian receptors, LPAIV was able to infect human lung explants and cells and there were no differences in abundance and localization of proteins. Infection of human lung explants with the HPAIV and LPAIV lead to a pronounced induction of IP10, MIP1β, IFNβ and IL1β while seasonal and pandemic 2009 viruses caused only a low cytokine response. Despite their differences in replication and cytokine induction, LPAIV and the seasonal virus both primarily targeted type II pneumocytes suggesting that the observed differences between the two viruses are not due to differences in cell tropism in the human lower respiratory tract. The experimental findings obtained in this study are compatible with clinical observations highlighting the value of ex vivo human lung explants to provide insights into viral pathophysiological behavior in humans.
|
7 |
Estimating Chronic Wasting Disease infectivity in cell culture / Untersuchungen zur Infektiösität von Chronic Wasting Disease (CWD) in ZellkulturSchmädicke, Ann-Christin 02 November 2011 (has links)
No description available.
|
Page generated in 0.0709 seconds