Spelling suggestions: "subject:"epectral efficient transmission"" "subject:"8pectral efficient transmission""
1 |
Optical Label Switching Technologies for Optical Packet Switched NetworksChowdhury, Arshad M. 20 November 2006 (has links)
Optical packet switching (OPS) is the most prominent candidate transport solution that can seamlessly integrate electrical and optical layers by transferring certain switching functionality from electronics to optics, thus alleviating unnecessarily slow and expensive optical-electrical-optical conversions and signal processing at the switching node. Optical Label Switching (OLS) is an important aspect of the optical packet switched network that enables very low-latency forwarding of ultra-high bit-rate, protocol-independent packets entirely in the optical domain.
The objective of the proposed research is to develop novel, efficient techniques to realize several key enabling technologies such as optical label generation and encoding, optical label swapping, all-optical buffering, and spectral efficient transmission system for optical label switched based OPS networks. A novel scheme of generating optical label at the ingress node using optical carrier suppression and separation (OCSS) technique is proposed. This scheme does not suffer from any unavoidable interference, limited extinction ratio or strict synchronization requirements between payload and label as observed by the currently available other label generation methods. One of the primary challenges to realize optical label swapping at the core node of scalable OLS network is the insertion of new optical labels without any wavelength conversion for same wavelength packet routing. A novel mechanism to realize same wavelength packet switching without using any conventional wavelength converter in the OLS network carrying differential phase-shift keying (DPSK) modulated payload and on-off keying (OOK) modulated optical label is demonstrated. Also a new dense wavelength division multiplexing (DWDM) optical buffer architecture using optical fiber delay lines that can provide wavelength selective reconfigurable variable delays is proposed. Optical packet switching provides automated, reconfigurable, and faster provision of both wavelength and bandwidth with finer granularity in the optical layer. However, a newer, cost-effective, and spectrally efficient optical transmission technology is essential to support the explosive bandwidth demand expected by the future optical packet switched networks. To meet this challenge, a spectrally efficient solution for transporting 40 Gbps per channel data over 50 GHz spaced DWDM system is developed by exploiting optical carrier suppression and separation technique and optical duobinary modulation.
|
Page generated in 0.1314 seconds