• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Metropolitan Area Network Architecture on Next-Generation Optical Network

Tsai, Shang-Hua 19 October 2006 (has links)
Due to the advances in content distribution and data center technologies, the traffic inside metropolitan area network (MAN) becomes more and more distributed. The current MAN architecture that only plays the role of bridge becomes insufficient to handle such new traffic patterns. Hence, the demand for a new MAN architecture is inevitable. It is expected to be both efficient and cost-effective. In this thesis, we proposed Optical Buffer Ring (OBR) as the solution of next generation MAN. It combines both OBS's low end-to-end delay and RPR's low loss rate. And compared to more advanced network architectures based on optical packet switching, OBR is of lower cost and thus more feasible in the near future. To evaluate the performance of OBR, we conducted simulation study over large set of parameters. According to the results, the performance of OBR indeed coincides with our expectation. Furthermore, OBR scales better than both OBS and RPR in that the end-to-end delay of OBR decreases as network size increases while the loss rate increases little with network size. Index Terms¡ÐMAN, WDM, OBS, OBR, RPR, HORNET, LightRing, Diffserv, optical packet switching.
2

Optical Label Switching Technologies for Optical Packet Switched Networks

Chowdhury, Arshad M. 20 November 2006 (has links)
Optical packet switching (OPS) is the most prominent candidate transport solution that can seamlessly integrate electrical and optical layers by transferring certain switching functionality from electronics to optics, thus alleviating unnecessarily slow and expensive optical-electrical-optical conversions and signal processing at the switching node. Optical Label Switching (OLS) is an important aspect of the optical packet switched network that enables very low-latency forwarding of ultra-high bit-rate, protocol-independent packets entirely in the optical domain. The objective of the proposed research is to develop novel, efficient techniques to realize several key enabling technologies such as optical label generation and encoding, optical label swapping, all-optical buffering, and spectral efficient transmission system for optical label switched based OPS networks. A novel scheme of generating optical label at the ingress node using optical carrier suppression and separation (OCSS) technique is proposed. This scheme does not suffer from any unavoidable interference, limited extinction ratio or strict synchronization requirements between payload and label as observed by the currently available other label generation methods. One of the primary challenges to realize optical label swapping at the core node of scalable OLS network is the insertion of new optical labels without any wavelength conversion for same wavelength packet routing. A novel mechanism to realize same wavelength packet switching without using any conventional wavelength converter in the OLS network carrying differential phase-shift keying (DPSK) modulated payload and on-off keying (OOK) modulated optical label is demonstrated. Also a new dense wavelength division multiplexing (DWDM) optical buffer architecture using optical fiber delay lines that can provide wavelength selective reconfigurable variable delays is proposed. Optical packet switching provides automated, reconfigurable, and faster provision of both wavelength and bandwidth with finer granularity in the optical layer. However, a newer, cost-effective, and spectrally efficient optical transmission technology is essential to support the explosive bandwidth demand expected by the future optical packet switched networks. To meet this challenge, a spectrally efficient solution for transporting 40 Gbps per channel data over 50 GHz spaced DWDM system is developed by exploiting optical carrier suppression and separation technique and optical duobinary modulation.
3

SLOW-LIGHT PHYSICS FOR ALL-OPTICAL TUNABLE DELAY

Pant, Ravi January 2009 (has links)
High-speed optical networks will require all-optical signalprocessing to avoid bottleneck due to optical-to-electrical (O/E)and electrical-to-optical (E/O) conversion. Enabling of opticalprocessing tasks such as optical buffering and data synchronizationwill require large tunable delay. Recently, slow-light physics gotwide attention to generate tunable delay. However, for a slow-lightsystem large delay comes at the expense of increased distortion.This dissertation presents a study of the slow-light systems andquantifies the limitations imposed on delay due to distortion andsystem resource constraints. Optimal designs for two- and three-lineBrillouin slow-light systems showed fractional pulse delay of up to1.7 compared to a single-line gain system. Optimal designs forbroadband Brillouin gain system showed upto 100\% delay improvementcompared to the Gaussian pump. Wavelength conversion and dispersionbased tunable delay systems showed bit delay of 15 bits. An opticalbuffer based on photorefractive medium for real-time data storagewas demonstrated by storing and retrieving a 7-bit data sequence.
4

Dynamically Reconfigurable Optical Buffer and Multicast-Enabled Switch Fabric for Optical Packet Switching

Yeo, Yong-Kee 30 November 2006 (has links)
Optical packet switching (OPS) is one of the more promising solutions for meeting the diverse needs of broadband networking applications of the future. By virtue of its small data traffic granularity as well as its nanoseconds switching speed, OPS can be used to provide connection-oriented or connectionless services for different groups of users with very different networking requirements. The optical buffer and the switch fabric are two of the most important components in an OPS router. In this research, novel designs for the optical buffer and switch fabric are proposed and experimentally demonstrated. In particular, an optical buffer that is based on a folded-path delay-line tree architecture will be discussed. This buffer is the most compact non-recirculating optical delay line buffer to date, and it uses an array of high-speed ON-OFF optical reflectors to dynamically reconfigure its delay within several nanoseconds. A major part of this research is devoted to the design and performance optimization of these high-speed reflectors. Simulations and measurements are used to compare different reflector designs as well as to determine their optimal operating conditions. Another important component in the OPS router is the switch fabric, and it is used to perform space switching for the optical packets. Optical switch fabrics are used to overcome the limitations imposed by conventional electronic switch fabrics: high power consumption and dependency on the modulation format and bit-rate of the signals. Currently, only those fabrics that are based on the broadcast-and-select architecture can provide truly non-blocking multicast services to all input ports. However, a major drawback of these fabrics is that they are implemented using a large number of optical gates based on semiconductor optical amplifiers (SOA). This results in large component count and high energy consumption. In this research, a new multicast-capable switch fabric which does not require any SOA gates is proposed. This fabric relies on a passive all-optical gate that is based on the Four-wave mixing (FWM) wavelength conversion process in a highly-nonlinear fiber. By using this new switch architecture, a significant reduction in component count can be expected.

Page generated in 0.0393 seconds