• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Appliction-driven Memory System Design on FPGAs

Dai, Zefu 08 January 2014 (has links)
Moore's Law has helped Field Programmable Gate Arrays (FPGAs) scale continuously in speed, capacity and energy efficiency, allowing the integration of ever-larger systems into a single FPGA chip. This brings challenges to the productivity of developers in leveraging the sea of FPGA resources. Higher level of design abstractions and programming models are needed to improve the design productivity, which in turn require memory architectural supports on FPGAs. While previous efforts focus on computation-centric applications, we take a bandwidth-centric approach in designing memory systems. In particular, we investigate the scheduling, buffered switching and searching problems, which are common to a wide range of FPGA applications. Despite that the bandwidth problem has been extensively studied for general-purpose computing and application specific integrated circuit (ASIC) designs, the proposed techniques are often not applicable to FPGAs. In order to achieve optimized design implementations, designers need to take into consideration both the underlying FPGA physical characteristics as well as the requirements from applications. We therefore extract design requirements from four driving applications for the selected problems, and address them by exploiting the physical architectures and available resources of FPGAs. Towards solving the selected problems, we manage to advance state-of-the-art with a scheduling algorithm, a switch organization and a cache analytical model. These lead to performance improvements, resource savings and feasibilities of new approaches for well-known problems.
2

Appliction-driven Memory System Design on FPGAs

Dai, Zefu 08 January 2014 (has links)
Moore's Law has helped Field Programmable Gate Arrays (FPGAs) scale continuously in speed, capacity and energy efficiency, allowing the integration of ever-larger systems into a single FPGA chip. This brings challenges to the productivity of developers in leveraging the sea of FPGA resources. Higher level of design abstractions and programming models are needed to improve the design productivity, which in turn require memory architectural supports on FPGAs. While previous efforts focus on computation-centric applications, we take a bandwidth-centric approach in designing memory systems. In particular, we investigate the scheduling, buffered switching and searching problems, which are common to a wide range of FPGA applications. Despite that the bandwidth problem has been extensively studied for general-purpose computing and application specific integrated circuit (ASIC) designs, the proposed techniques are often not applicable to FPGAs. In order to achieve optimized design implementations, designers need to take into consideration both the underlying FPGA physical characteristics as well as the requirements from applications. We therefore extract design requirements from four driving applications for the selected problems, and address them by exploiting the physical architectures and available resources of FPGAs. Towards solving the selected problems, we manage to advance state-of-the-art with a scheduling algorithm, a switch organization and a cache analytical model. These lead to performance improvements, resource savings and feasibilities of new approaches for well-known problems.
3

Dynamically Reconfigurable Optical Buffer and Multicast-Enabled Switch Fabric for Optical Packet Switching

Yeo, Yong-Kee 30 November 2006 (has links)
Optical packet switching (OPS) is one of the more promising solutions for meeting the diverse needs of broadband networking applications of the future. By virtue of its small data traffic granularity as well as its nanoseconds switching speed, OPS can be used to provide connection-oriented or connectionless services for different groups of users with very different networking requirements. The optical buffer and the switch fabric are two of the most important components in an OPS router. In this research, novel designs for the optical buffer and switch fabric are proposed and experimentally demonstrated. In particular, an optical buffer that is based on a folded-path delay-line tree architecture will be discussed. This buffer is the most compact non-recirculating optical delay line buffer to date, and it uses an array of high-speed ON-OFF optical reflectors to dynamically reconfigure its delay within several nanoseconds. A major part of this research is devoted to the design and performance optimization of these high-speed reflectors. Simulations and measurements are used to compare different reflector designs as well as to determine their optimal operating conditions. Another important component in the OPS router is the switch fabric, and it is used to perform space switching for the optical packets. Optical switch fabrics are used to overcome the limitations imposed by conventional electronic switch fabrics: high power consumption and dependency on the modulation format and bit-rate of the signals. Currently, only those fabrics that are based on the broadcast-and-select architecture can provide truly non-blocking multicast services to all input ports. However, a major drawback of these fabrics is that they are implemented using a large number of optical gates based on semiconductor optical amplifiers (SOA). This results in large component count and high energy consumption. In this research, a new multicast-capable switch fabric which does not require any SOA gates is proposed. This fabric relies on a passive all-optical gate that is based on the Four-wave mixing (FWM) wavelength conversion process in a highly-nonlinear fiber. By using this new switch architecture, a significant reduction in component count can be expected.

Page generated in 0.0443 seconds