• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 8
  • 6
  • 4
  • 1
  • Tagged with
  • 48
  • 48
  • 19
  • 17
  • 17
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nanog Regulates Chromatin Organization in Mouse Stem Cells

Tang, Calvin Chun Man 28 November 2013 (has links)
Mouse embryonic stem cells (ESCs) are known to possess an “open” global chromatin architecture characterized by dispersed chromatin fibres throughout the nucleus. This is in contrast to differentiated cell types, where chromatin generally congregates into numerous compact domains. Core transcription factors in ESCs regulate many genes involved in maintaining pluripotency and previous research has hinted a connection between these factors and chromatin organization. My hypothesis is that Nanog, one of the core transcription factors, functions in maintaining an “open” chromatin organization in mouse ESCs. In this study, the chromatin organization in ESCs expressing varying levels of Nanog was examined at the sub-micron level through electron spectroscopic imaging. An inverse correlation was identified between Nanog expression level and the chromatin fibre density in constitutive heterochromatic regions. Furthermore, global chromatin in the more differentiated epiblast stem cells became less compact upon Nanog overexpression. Altogether, these findings support the idea that Nanog plays a role in maintaining dispersed chromatin in mouse ESCs.
12

Nanog Regulates Chromatin Organization in Mouse Stem Cells

Tang, Calvin Chun Man 28 November 2013 (has links)
Mouse embryonic stem cells (ESCs) are known to possess an “open” global chromatin architecture characterized by dispersed chromatin fibres throughout the nucleus. This is in contrast to differentiated cell types, where chromatin generally congregates into numerous compact domains. Core transcription factors in ESCs regulate many genes involved in maintaining pluripotency and previous research has hinted a connection between these factors and chromatin organization. My hypothesis is that Nanog, one of the core transcription factors, functions in maintaining an “open” chromatin organization in mouse ESCs. In this study, the chromatin organization in ESCs expressing varying levels of Nanog was examined at the sub-micron level through electron spectroscopic imaging. An inverse correlation was identified between Nanog expression level and the chromatin fibre density in constitutive heterochromatic regions. Furthermore, global chromatin in the more differentiated epiblast stem cells became less compact upon Nanog overexpression. Altogether, these findings support the idea that Nanog plays a role in maintaining dispersed chromatin in mouse ESCs.
13

Spectroscopic imaging using quadrature optical coherence tomography

Thanusutiyabhorn, Pimrapat 02 September 2014 (has links)
Optical Coherence Tomography (OCT) is a subsurface imaging technique with many biomedical and industrial applications. In this thesis, we describe our design and implementation of a time domain OCT system. We used this system to obtain OCT images of objects that are important in different applications. We also used an existing quadrature OCT system to obtain both real and imaginary parts of an OCT image. We introduced a new interpretation of OCT images as the 2nd derivative of the scattering potential of an object. To obtain this scattering potential from its 2nd derivative, we implemented a method of definite integration in the spectral-domain. The obtained scattering potential was used to separate the scattering profile from the absorption profile of an object. We applied this new spectroscopic imaging method to quadrature OCT images of different objects.
14

Compressed Sensing Accelerated Magnetic Resonance Spectroscopic Imaging

January 2016 (has links)
abstract: Magnetic resonance spectroscopic imaging (MRSI) is a valuable technique for assessing the in vivo spatial profiles of metabolites like N-acetylaspartate (NAA), creatine, choline, and lactate. Changes in metabolite concentrations can help identify tissue heterogeneity, providing prognostic and diagnostic information to the clinician. The increased uptake of glucose by solid tumors as compared to normal tissues and its conversion to lactate can be exploited for tumor diagnostics, anti-cancer therapy, and in the detection of metastasis. Lactate levels in cancer cells are suggestive of altered metabolism, tumor recurrence, and poor outcome. A dedicated technique like MRSI could contribute to an improved assessment of metabolic abnormalities in the clinical setting, and introduce the possibility of employing non-invasive lactate imaging as a powerful prognostic marker. However, the long acquisition time in MRSI is a deterrent to its inclusion in clinical protocols due to associated costs, patient discomfort (especially in pediatric patients under anesthesia), and higher susceptibility to motion artifacts. Acceleration strategies like compressed sensing (CS) permit faithful reconstructions even when the k-space is undersampled well below the Nyquist limit. CS is apt for MRSI as spectroscopic data are inherently sparse in multiple dimensions of space and frequency in an appropriate transform domain, for e.g. the wavelet domain. The objective of this research was three-fold: firstly on the preclinical front, to prospectively speed-up spectrally-edited MRSI using CS for rapid mapping of lactate and capture associated changes in response to therapy. Secondly, to retrospectively evaluate CS-MRSI in pediatric patients scanned for various brain-related concerns. Thirdly, to implement prospective CS-MRSI acquisitions on a clinical magnetic resonance imaging (MRI) scanner for fast spectroscopic imaging studies. Both phantom and in vivo results demonstrated a reduction in the scan time by up to 80%, with the accelerated CS-MRSI reconstructions maintaining high spectral fidelity and statistically insignificant errors as compared to the fully sampled reference dataset. Optimization of CS parameters involved identifying an optimal sampling mask for CS-MRSI at each acceleration factor. It is envisioned that time-efficient MRSI realized with optimized CS acceleration would facilitate the clinical acceptance of routine MRSI exams for a quantitative mapping of important biomarkers. / Dissertation/Thesis / Doctoral Dissertation Bioengineering 2016
15

The development of novel tools for in vivo molecular imaging using hyperpolarised ¹³C labelled molecules and ¹³C magnetic resonance spectroscopy and spectroscopic imaging

Dzien, Piotr January 2015 (has links)
No description available.
16

Characterizing the Organization within Alternative Lengthening of Telomere Associated-promyelocytic Leukemia Nuclear Bodies

Larsen, Andrew 07 January 2011 (has links)
In the absence of telomerase activity, a subset of cancerous and immortalized cells maintain telomere length by means of a poorly understood mechanism, termed alternative lengthening of telomeres (ALT). Many details of telomere maintenance in ALT positive cells remain unclear, but significant evidence implicates a homologous recombination mechanism. ALT specific nuclear structures, known as ALT-associated promyelocytic leukemia nuclear bodies (APBs), are thought to serve as the site of telomere extension. Using electron spectroscopic imaging we have demonstrated that APBs contain substantial amounts of nucleic acid sequestered within the bodies. In contrast, promyelocytic leukemia nuclear bodies in non-ALT cell lines contain no significant nucleic acid. We show that the nucleic acid found in APBs is not RNA and provide evidence that it is in fact telomeric repeat DNA. This evidence supports a role for APBs to sequester extrachromosomal telomeric DNA in order to suppress the activation of DNA repair.
17

Characterizing the Organization within Alternative Lengthening of Telomere Associated-promyelocytic Leukemia Nuclear Bodies

Larsen, Andrew 07 January 2011 (has links)
In the absence of telomerase activity, a subset of cancerous and immortalized cells maintain telomere length by means of a poorly understood mechanism, termed alternative lengthening of telomeres (ALT). Many details of telomere maintenance in ALT positive cells remain unclear, but significant evidence implicates a homologous recombination mechanism. ALT specific nuclear structures, known as ALT-associated promyelocytic leukemia nuclear bodies (APBs), are thought to serve as the site of telomere extension. Using electron spectroscopic imaging we have demonstrated that APBs contain substantial amounts of nucleic acid sequestered within the bodies. In contrast, promyelocytic leukemia nuclear bodies in non-ALT cell lines contain no significant nucleic acid. We show that the nucleic acid found in APBs is not RNA and provide evidence that it is in fact telomeric repeat DNA. This evidence supports a role for APBs to sequester extrachromosomal telomeric DNA in order to suppress the activation of DNA repair.
18

Investigation on Absolute Quantification of in Vivo Proton MR Spectroscopy with Phased Array Coils

Hsu, Cheng-yun 16 July 2008 (has links)
LCModel has been widely used for MR spectroscopy analysis. LCMgui, which is the built-in user interface of LCModel, based on Linux system, provides the functionality to convert MRS data of various formats to match the format of LCModel raw file, except for GE MRSI data which can be analyzed by LCModel only with GE Sage/IDL software. Hence, the first part of this work was to develop a multi-platform tool with LCModel to support all GE data, including GE MRSI data and phased array data. With this tool, users can analyze MRS data with LCModel on their familiar environment such as Windows, and Linux. The MR spectroscopy experiments with phased array coils provide optimized SNR which lead to more accurate absolute quantification by some sophisticate combination algorithms of phased array coils. Thus, the second part of this work was to propose an algorithm of combining data obtained from phased array coils by doing phase correction and calculation of weighting factor. In addition, the comparison of the accuracy between using quadrature coil and phased array coils with different combination algorithms was investigated in order to demonstrate the efficiency of using phased array coils and the combination program.
19

Development of Multi-console Analysis Tool for 2D MR Spectroscopic Imaging with LCModel

Hsueh, Po-Tsung 22 July 2008 (has links)
Magnetic resonance (MR) has been developed and applied to clinical analysis studies due to its non-invasive properties. Because of the increasing interest of applying magnetic resonance spectroscopy imaging (MRSI) to clinical application, some post-processing softwares, like LCModel, provide a graphical user interface for convenient and efficient analysis. However, the features of combining MR imaging (MRI) with MRS information and browsing all analyzed results are not provided by LCModel. Our study proposed a method to implement the architecture for processing General Electric (GE), Siemens MRSI data sets and provides features including interactive display, selection and analysis of full 2D slices. For multi-console analysis, our tool also provides the combination of MRS, MRI, and data sets generated by LCModel, such as the projection of three planes and metabolite/spectra map, and therefore the three formats of data sets could be obtained from scanners of various manufactures. Especially, it is more complicated when processing GE data sets, so some mechanisms for processing are proposed, like the transformation, the three plane loc images detection and MRSI detection, etc. Additionally, our tool also has the advantage of the compatibility of further extended functionalities, which would be more flexible and useful for clinical applications.
20

Atomic Force Microscopic, Electron Spectroscopic Imaging and Molecular Simulation Investigations of the Assembly and Structures of Collagen Constructs

Su, Ning 13 August 2013 (has links)
Collagen is one of the major protein constituents in mammals and is present in all tissues and organs with the exceptions of keratin tissues such as hair and nails. Collagen monomers self-aggregate into a number of structures. In order to understand the physical bases for the structural polymorphism observed in collagen, a good starting point is one of the simplest collagen aggregates, segmental long spacing (SLS) collagen. Although SLS collagen formation induced by the presence of adenosine 5’-triphosphate is widely known, effects of other triphosphates, on the other hand, are much less studied. By varying the pH, it is discovered that all the nucleoside 5’-triphophsates, as well as inorganic triphosphate, are able to induce SLS formation over certain pH ranges. Adenosine 5’-diphosphate and para-nitrophenylphosphate cannot induce SLS formation at any pH. Based on the pH ranges at which SLS collagen can be formed, it is concluded the triphosphate functionality, with one negative charge per phosphate group, is primarily responsible for the formation of SLS collagen. Since inorganic triphosphate is able to induce SLS collagen formation, the presence of the nucleoside is optional for the assembly process; however if present, the assembly process prefers the nucleosides carrying acidic protons. Using electron spectroscopic imaging (ESI) technique, it is found phosphorus, present only in nucleotides but not in polypeptides, is localized in certain regions of SLS collagen, forming a unique banding pattern transverse the long axis of the SLS collagen. Nitrogen mapping indicates the localization of phosphorus is not due to accumulation of materials. The phosphorus banding pattern demonstrates an excellent consistency across SLS collagen assembled from both bovine and recombinant human collagen monomers. Results from molecular simulation are consistent with the experimental results. All threephosphate groups seem to be involved in the assembly process to some degree. In the last chapter of the thesis, a reliable protocol to synthesis native type collagen fibers is introduced.

Page generated in 0.0802 seconds