Spelling suggestions: "subject:"spectroscopie cohérence nonlinéaire"" "subject:"spectroscopie cohérence nonlinéaires""
1 |
Spectroscopie cohérente non-linéaire de boîtes quantiques uniques dans des nanostructures photoniques / Nonlinear coherent spectroscopy of single quantum dots in photonic nanostructuresMermillod-Anselme, Quentin 18 May 2016 (has links)
La décohérence dans les solides est un problème majeur vers la réalisation d'un processeur quantique basé sur l'utilisation de boîtes quantiques (BQs) semiconductrices comme qubits optiquement actifs. Mesurer et contrôler la cohérence optique de tels qubits s'avère donc primordial, tant d'un point de vue technologique que fondamental. Cependant, leurs tailles nanométriques, associées aux temps de vie sub-nanosecondes de leurs transitions optiques, rendent les mesures expérimentales très délicates.Ce travail de thèse propose une étude détaillée des mécanismes de déphasage et de couplage cohérent de complexes excitoniques fortement confinés dans des BQs InAs/GaAs individuelles. Pour réaliser ces mesures, j'ai développé une expérience de mélange à quatre ondes hétérodyne sensible à l'amplitude et à la phase du champ électrique émis par une BQ unique. Ce dispositif permet de mesurer le temps de vie et de cohérence d'un exciton unique, même en présence d'élargissement inhomogène. Pour augmenter l'interaction lumière-matière et l'efficacité d'extraction du signal, l'utilisation de nanostructures photoniques s'est avérée indispensable. La sensibilité optique du dispositif m'a permis d'étudier en détail les mécanismes d'interaction exciton-phonon, source importante de décohérence dans les solides, comme la formation du polaron acoustique, le couplage quadratique aux phonons acoustiques, et le déphasage induit pendant l'excitation. Par ailleurs, la réalisation de spectres bidimensionnels m'a permis de révéler le couplage cohérent entre différentes transitions excitoniques. Enfin, je présente un nouveau protocole de mélange multi-ondes permettant de contrôler la réponse cohérente d'un exciton unique que je propose d'appliquer sur une paire de BQs pour contrôler le couplage radiatif longue distance, étape fondamentale vers la réalisation d'une porte logique quantique dans les solides. / Decoherence in solids is a major issue towards the realization of a quantum processor based on semiconductor quantum dots (QDs) as optically active qubits. Measuring and controlling the optical coherence of such qubits is required in their fundamental studies, paving a way for technological applications. However, their nanometer size combined to the sub-nanosecond lifetime of their optical transitions, render experimental measurements very challenging.This thesis presents a detailed study of the dephasing mechanisms and the coherent coupling of excitonic complexes strongly confined in individual InAs/GaAs QDs. To achieve these measurements, I developed an heterodyne four-wave mixing experiment sensitive to the amplitude and phase of the electric field emitted by a single QD. With this setup one can measure the lifetime and the coherence time of a single exciton, even in the presence of inhomogeneous broadening. To increase the light-matter interaction and the extraction efficiency of the signal, the use of photonic nanostructures has proved to be necessary. The optical sensitivity of the setup allowed me to study in detail the mechanisms of exciton-phonon interaction, which is an important source of decoherence in solids, like the acoustic polaron formation, the quadratic coupling to acoustic phonons, and the excitation-induced dephasing. Furthermore, by inferring two-dimensional spectra, I demonstrate coherent couplings between various exciton complexes. Finally, I highlight a new multi-wave mixing protocol to control the coherent response of a single exciton, and I propose to employ it to control long-range radiative coupling between two QDs, which is a fundamental step towards achieving a quantum logic gate in solids.
|
Page generated in 0.1671 seconds