• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5430
  • 1684
  • 844
  • 582
  • 317
  • 215
  • 115
  • 110
  • 95
  • 95
  • 95
  • 95
  • 95
  • 94
  • 66
  • Tagged with
  • 12105
  • 1637
  • 1563
  • 1556
  • 1259
  • 1136
  • 1074
  • 1020
  • 986
  • 974
  • 908
  • 880
  • 846
  • 809
  • 799
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
641

Structural Characterization of As-S-Se Glasses for Waveguide Applications Using Near-infrared Raman Spectroscopy

Rivero, Clara A. 01 January 2001 (has links)
Chalcogenide glasses (ChG) have shown very promising properties for integrated optical applications at the 1.3 and 1.55 µm optical communication wavelengths due to their transparency in the near-infrared region and high nonlinear Kerr effect. Recent experiments on the ChG system have demonstrated the vast flexibility and potential of these materials in applications as optical memories, switches, and diffractive elements, as well as couplers and self-written planar waveguides. However, to advance these novel applications, it is crucial to identify the structure-property relationship in the glass, in both bulk and film materials. Throughout this research work we used conventional near-infrared (NIR) Raman spectroscopy (e.g. backscattering and 90° geometry) to investigate structure-property relationships in chalcogenide materials. Initially, we conducted a homogeneity study of the bulk glass to analyze the elaboration and processing conditions of these glasses. Furthermore, we investigated the compositional variation of the bulk glass and established a relationship between the Raman spectra, and hence their molecular structure, with the optical properties of the material. When the analysis of the bulk glass was completed, we sent the bulk samples to Laval University in Canada, where the fabrication of the thin films and waveguide structures took place. Right after the film and waveguide samples were created, they were sent back to us, where, once again, we conducted a Raman study to investigate any differences between the films and the bulk glass. In this case, the Raman analysis was conducted using Micro-Raman (backscattering geometry) and Waveguide Raman spectroscopy (90° scattering geometry). Here we demonstrate, for the first time to our knowledge, the use of near-infrared (NIR) waveguide Raman spectroscopy to investigate the microstructure of chalcogenide thin films. This integrated optical technique is extremely powerful in the microstructural analysis of thin film devices due to the combination of good molecular specificity and high sensitivity. The Raman spectra depict microstructural differences between As2S3 films, fibers, and bulk glasses. In the ternary compounds, these microstructural differences are less observable. In chalcogen-rich glasses, the vibrational spectra reveal the preferential formation of homopolar Se-Se and S-S bonds. In those compositions, where Se-Se bonds are observed, high nonlinear optical coefficients have been measured. Near-infrared Raman spectroscopy of photoinduced and annealed structures also allows to identify specific bonding changes which accompany the aging process.
642

Diagnostics in VUV laser spectroscopy

Huang, Ping 03 1900 (has links)
Thesis (MSc (Physics))--University of Stellenbosch, 2005. / A tunable vacuum ultra-violet (VUV) laser source was recently developed for VUV spectroscopy using state selective excitation and total fluorescence detection. The VUV laser source makes use of a four-wave mixing process to provide tunable VUV radiation for the electronic excitation of the molecules. The theory of four-wave mixing, with the emphasis on parameters that are important for our experimental setup to generate efficient tunable VUV radiation is discussed. The experimental setup, and in particular the metal vapor heat-pipe, which provides Mg vapor as the nonlinear medium, is described. New diagnostic equipment described in this work was added to the experimental setup. This equipment was characterized and utilized together with the existing setup. The additional diagnostic equipment introduced enabled us to measure the tunable VUV output of the source (using a VUV monochromator), making it possible to significantly improve the efficiency of the existing tunable VUV laser source.
643

INVESTIGATION OF SPECTROSCOPIC PROPERTIES OF FLAMES AND PLASMAS VIA COMPUTER CONTROLLED INSTRUMENTATION

Algeo, Donald John January 1981 (has links)
The Babington principle nebulizer, useful for the introduction of samples containing suspended solids, or having high viscosities, into flames or plasmas, has been developed and characterized. Smaller versions of the nebulizer have been shown to provide higher sensitivity and reduced memory relative to the larger devices used previously. Data showing the sensitivities observed with a Babington type nebulizer and a flame emission spectrophotometer at varying flow rates of both the nebulizing gas and the sample solution are presented, along with an evaluation of several nebulizer configurations and tip sytles. The effect of nebulizing gas orifice size upon sensitivity is discussed. Although the Babington principle nebulizer will tolerate samples of varying viscosity, the nebulization efficiency is affected by the sample solution viscosity. A Babington type nebulizer employing a sample heater has been constructed and evaluated using motor oils of differing grades, and has been shown to reduce the effect of viscosity for this class of samples. This heated Babington type nebulizer has been used to develop a method for the analysis of wear metals in oil which does not require sample pretreatment. The effect of polymeric viscosity index improving additives commonly added to motor oils on the sensitivity of the method has been explored, as well as the effect of different complexing agents which may be used in the preparation of standards. A new method is described for numerically evaluating the inverted Abel integral equation, used to extract information about interior regions of flames and plasmas from spatially resolved data obtained from side-on measurements. This method, based upon cubic spline approximations, is compared to modifications of two methods drawn from the literature over a range of data set sizes and with varying amounts of noise superimposed upon the signal. The results of this study give a basis for selecting the best method for transforming experimental data of varying quality, and also for estimating the reliability of the results of the computation. An appendix describes the design and development of an instrument, computer interface, and software package which allow spatial mapping of spectroscopic sources at high speed. Suggestions are given for future work in these areas.
644

Vacuum ultraviolet laser spectroscopy of CO molecules in a supersonic jet

Steinmann, C. M. (Christine Margarete) 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: A tunable narrow-bandwidth laser source combined with a supersonic gas jet as sample is wellsuited for obtaining high-resolution spectra of cold isolated molecules and complexes. In the present study such a laser source in the vacuum ultraviolet was applied to the spectroscopic investigation of rare carbon monoxide (CO) isotopomers and CO-noble gas van der Waals complexes in supersonic gas pulses seeded with natural CO gas. Tunable coherent vacuum ultraviolet radiation was generated by two-photon resonant fourwave sum-frequency mixing of two pulsed dye laser beams in a magnesium vapour medium. Laser induced fluorescence excitation spectra of the A(v'=3)-X(v"=0) vibronic band of CO molecules in a noble gas (neon or argon) jet were obtained by measuring the total undispersed fluorescence from the irradiated sample volume in dependence of the excitation wavelength. The dynamics of the flow-cooling process in the supersonic jet were investigated and the experimental parameters optimised using the rotational temperature of 12C160as determined from rotational line intensities. Rotational temperatures as low as 2 ± I K were observed. Spectroscopic detection of the rare 12C170and 12C180isotopomers was facilitated by the low rotational temperature and high spectral resolution. Six rotational lines of 12C170and four of 12C180were detected in the A(v'=3)-X(v"=0) vibronic band. This demonstrates the low detection limit (circa 3 parts per million) obtained in the experiment. The line wavelengths were determined to an accuracy of 0.2 pm using the well-documented 12C160and 13C160lines for calibration. The spectral results on 12C170are, to our knowledge, the first rotationally resolved laboratory measurements published on the A-X band of this isotopomer. Accurate wavelength data of the stable isotopomers of CO is of importance in the interpretation of astrophysical observations of CO in the interstellar medium. The newly determined 12C170wavelengths were successfully applied to a recent problem in astrophysics (Astrophys. J. Lett. 2003). The conditions in a supersonic jet facilitate the study of weakly bound van der Waals complexes, of which CO-noble gas complexes are prototypes. However, there is no experimental data available on the electronic excitation spectra of the CO-noble gas complexes, lying in the vacuum ultraviolet region. In the present experiment evidence of extensive complexation of the CO in the noble gas jet has been found, but in the spectral region around the A(v'=3)-X(v"=O) band of CO no distinct spectral features that could be associated with these complexes were observed. Having considered the existing knowledge on CO and CO-noble gas complexes and experimental studies on the excitation and dissociation dynamics of Iz-noble gas complexes, we regard complex induced inter-system crossing or electronic predissociation as the most likely causes for these observations. The results on the rare CO isotopomers demonstrate the potential of our experimental setup for high-resolution, isotope and state selective spectroscopy in the vacuum ultraviolet with a high sensitivity for fluorescent species. The availability of the now well-characterised experimental setup in our laboratory opens the way for further investigation of molecular or complex species with spectroscopic features in the vacuum ultraviolet region. / AFRIKAANSE OPSOMMING: Vakuum ultraviolet laser spektroskopie van CO molekules in 'n supersoniese gasstraal: 'n Afstembare smal bandwydte laserbron en 'n supersoniese gasstraal as monster is 'n geskikte kombinasie vir hoë-resolusie spektroskopie van geïsoleerde afgekoelde molekules en komplekse. In hierdie studie is so 'n laserbron in die vakuum ultraviolet gebruik in die spektroskopiese ondersoek van skaars koolstofmonoksied (CO) isotopomere en CO-edelgas van der Waals komplekse in supersoniese gaspulse wat 'n klein persentasie natuurlike CO gas bevat. Afstembare koherente vakuum ultraviolet lig is verkry deur twee-foton resonante vier-golf som-frekwensie vermenging van twee gepulseerde kleurstoflaserbundels in 'n magnesiumdamp medium. Laser-geïnduseerde fluoressensie opwekkingspektra van die A(v'=3)-X(v"=0) vibroniese band van die CO molekules in die edelgasstraal (neon of argon) is uitgemeet deur die totale fluoressensie van die beligte gasmonster, sonder golflengteskeiding, te meet as funksie van die opwekkingsgolflengte. Die dinamika van die vloeiverkoelingsproses in die supersoniese gasstraal is ondersoek en die eksperimentele parameters geoptimeer deur gebruik te maak van die rotasionele temperatuur van 12Cl60 soos bepaal uit die intensiteitsverhoudings van die rotasielyne. Rotasionele temperature tot so laag as 2 ± 1 K is waargeneem. Spektroskopiese waarneming van die skaars 12C170 and 12Cl80 isotopomere is moontlik gemaak deur die lae rotasionele temperatuur en die hoë spektrale resolusie. Ses rotasielyne van 12C170 en vier van 12C180 is waargeneem in die A(v'=3)-X(v"=0) vibroniese band. Dit demonstreer die lae deteksielimiet (ongeveer 3 dele per miljoen) wat bereik kon word. Die golflengtes van die lyne is bepaal met 'n akkuraatheid van 0.2 pm deur die bekende lyne van 12C160en 13C160vir kalibrasie te gebruik. Die resultate ten opsigte van 12C170 is sover vasgestel kon word die eerste rotasioneel-opgeloste laboratorium metings van die A-X band van hierdie isotopomeer. Akkurate golflengte data vir die stabiele CO isotopomere is van belang vir die interpretasie van die astrofisiese waarnemings van CO in die interstellêre medium. Die nuwe 12C170 golflengtes is suksesvol aangewend in die oplossing van 'n onlangse interpretasieprobleem in astrofisika (Astrophys. J. Lett. 2003). Die toestande in 'n supersoniese gasstraal maak die bestudering van swak-gebonde van der Waals komplekse moontlik. Hoewel CO-edelgas van der Waals komplekse as prototipes beskou word, is daar geen eksperimentele data beskikbaar oor die elektroniese opwekkingspektra van hierdie spesies, wat in die vakuum ultraviolet gebied lê, nie. In hierdie studie is daar eksperimentele getuienis gevind vir uitgebreide kompleksering van CO in die edelgasstraal, maar in die spektraalgebied rondom die A(v'=3)-X(v"=O) band van CO is geen duidelike spektrale kenmerke wat met hierdie komplekse geassosieer kan word, waargeneem nie. Na oorweging van die bestaande kennins oor CO en CO-edelgas komplekse en eksperimentele studies oor die opwekking en dissosiasie-dinamika van Iz-edelgas komplekse, beskou ons kompleksgeïnduseerde intersisteemoorgange of elektroniese predissosiasie as die waarskynlikste redes vir hierdie waarnemings. Die resultate oor die skaars CO isotopomere toon die potensiaal van ons eksperimentele opstelling vir hoë-resolusie, isotoop- en toestandselektiewe spektroskopie in die vakuum ultraviolet met uitstekende sensitiwiteit vir fluoresserende spesies. Die beskikbaarheid van hierdie nou deeglik gekarakteriseerde eksperimentele opstelling in ons laboratorium maak verdere ondersoek na molekulêre of kompleks-spesies met spektroskopiese kenmerke in die vakuum ultraviolet moontlik.
645

Catalytic methane reformation and aromatization reaction studies via cavity ringdown spectroscopy and time of flight mass spectrometry

Li, Ling, 李凌 January 2007 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy
646

Study of chemically modified non-starch polysaccharides

袁詩雅, Yuen, Sze-nga. January 2007 (has links)
published_or_final_version / abstract / Biological Sciences / Doctoral / Doctor of Philosophy
647

THE USE OF VACUUM ULTRAVIOLET RADIATION IN THE ANALYSIS OF ORGANIC SPECIES AND RELATED INVESTIGATIONS (INDUCTIVELY-COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY).

BABIS, JEFFERY SCOTT. January 1983 (has links)
Inductively-Coupled Plasma Optical Emission Spectrometry (ICP-OES) is evaluated as a method for the selective determination of several non-metals which emit light in the Vacuum Ultraviolet (VUV) region of the spectrum. In this study, emphasis is placed on those elements which are totally unobservable with standard techniques or have very weak lines in the UV-VIS region of the spectrum. The sensitivity and accuracy of the apparatus and methods devised allows the determination of empirical formulas of gas chromatographic effluents. The results of this study indicate that the background emission of the ICP in the VUV is low level and nearly constant over the entire spectral region investigated (125 - 185 nm.). Promising analytical lines for oxygen, nitrogen, chlorine, bromine, and carbon are also observed in this region. A progression of four experimental configurations were constructed, employing a purged optical path and a unique coolant tube design. The last of these configurations has the capability of spatial resolution of individual portions of the discharge so that emission maps and profiles could be constructed. The results of the maps generated indicate that the region of highest emission intensity is always centered in the discharge. However, the vertical position of this region is found to be dependent upon r.f. power and argon flow rates. Detection limits in the low nanogram region are observed for each non-metal. The dynamic range for each element is in excess of 10⁴ and the selectivity ratio versus carbon is above 100 in each case. A method was developed for determining the elemental composition of the effluents of a GC. Using internal standards, the method is independent of the weight of each component eluted thus sampling errors are eliminated. The average relative errors in multielement analysis are 0.89%, 0.75%, 2.1%, 0.55%, and 0.64% for the percent carbon, oxygen, nitrogen, chlorine, and bromine, respectively.
648

Angle-resolved femtosecond photoelectron spectroscopy of fullerenes

Johansson, Olof Johan January 2011 (has links)
An experimental apparatus has been constructed to investigate ionisation mechanisms of complex molecules and nanoparticles after femtosecond and/or picosecond laser excitation. The photoproducts are detected by time-of-flight mass spectrometry and velocity-map imaging (VMI) photoelectron spectroscopy. Test measurements on C60 and Xe have successfully reproduced previously published work indicating that the setup is working in a satisfactory manner. New detailed investigations of mass spectra and angle resolved photoelectron spectra (PES) have been carried out as a function of laser intensity, wavelength and pulse duration for C60 and C70, providing new insights into the electronic structure and ionisation mechanisms of these molecules. For 400 nm, 130 fs laser excitation, an isotropic contribution from thermally emitted electrons is found. A series of peaks are seen superimposed on the thermal background with binding energies in agreement with the recently discovered superatom molecular orbitals (SAMOs) of C60 [Feng et.al. Science 320 (2008) p. 359]. Furthermore, the angular dependence of the peak in the PES corresponding to the s-SAMO is in agreement with this assignment. To confirm the assignment of the other observed peaks it is concluded that the measured photoelectron angular distributions (PADs) need to be compared to calculated angular distributions. Measurements have also been made with the same wavelength but with a pulse duration of about 5 ps. Mass spectra, PES and PADs for these measurements show that the main ionisation mechanism for these laser conditions is delayed (thermionic) ionisation. For 800 nm, 130 and 180 fs laser excitation, thermally emitted electrons are observed. In contrast to the 400 nm measurements, the PADs show an asymmetry with higher apparent temperatures along the laser polarisation direction. Measurements were also made for longer pulse durations (1.0 – 3.8 ps). For pulse durations above 1 ps the asymmetry is gradually reduced while the delayed ionisation component in the mass spectrum increases with increasing pulse duration. The asymmetry is compared to calculations made assuming a field-assisted thermal electron emission. Similarly to the 400 nm experiments, a series of peaks are seen superimposed on the thermal background. PADs are presented for these peaks. PADs for peaks with the same binding energy as peaks seen in the 400 nm experiments follow the same trend. Isotropic PADs after ns laser excitation are also presented confirming delayed ionisation for these pulse durations.
649

Cellulose-water interaction: a spectroscopic study

Lindh, Erik L January 2016 (has links)
The human society of today has a significantly negative impact on the environment and needs to change its way of living towards a more sustainable path if to continue to live on a healthy planet. One path is believed to be an increased usage of naturally degradable and renewable raw materials and, therefore, attention has been focused on the highly abundant biopolymer cellulose. However, a large drawback with cellulose-based materials is the significant change of their mechanical properties when in contact with water. Despite more than a century of research, the extensively investigated interaction between water and cellulose still possesses many unsettled questions, and if the answer to those were known, cellulose-based materials could be more efficiently utilized. It is well understood that one interaction between cellulose and water is through hydrogen bonds, established between water and the hydroxyl groups of the cellulose. Due to the very similar properties of the hydroxyl groups in water and the hydroxyl groups of the cellulose, the specific interaction-induced effect on the hydroxyl groups at a cellulose surface is difficult to investigate.  Therefore, a method based on 2H MAS NMR spectroscopy has been developed and validated in this work. Due to the verified ability of the methodology to provide site-selective information regarding the molecular dynamics of the cellulose deuteroxyl groups (i.e. deuterium-exchanged hydroxyl groups), it was shown by investigating 1H-2H exchanged cellulose samples that only two of the three accessible hydroxyl groups (on the surface of cellulose fibrils) exchange with water. This finding was also verified by FT-IR spectroscopy, and together with MD simulations we could establish that it is O(2)H and O(6)H hydroxyl groups (of the constituting glucose units) that exchange with water. From the MD simulations additional conclusion could be drawn regarding the molecular interactions required for hydrogen exchange; an exchanging hydroxyl group needs to donate its hydrogen in a hydrogen bond to water. Exchange kinetics of thin cellulose films were investigated by monitoring two different exchange processes with FT-IR spectroscopy. Specific information about the two exchanging hydroxyl/deuteroxyl groups was then extracted by deconvoluting the changing intensities of the recorded IR spectra. It was recognized that the exchange of the hydroxyl groups were well described by a two-region model, which was assessed to correspond to two fibrillary surfaces differentiated by their respective positions in the fibril aggregate. From the detailed deconvolution it was also possible to estimate the fraction of these two surfaces, which indicated that the average aggregate of cotton cellulose is built up by three to four fibrils.                       2H MAS NMR spectroscopy was used to examine different states of water in cellulose samples, hydrated at different relative humidities of heavy water. The results showed that there exist two states of water adsorbed onto the cellulose, differentiated by distinct different mobilities. These two states of water are well separated and had negligible exchange on the time scale of the experiments. It was suggested that they are located at the internal and external surfaces of the fibril aggregates. By letting cellulose nanofibrils undergo an epoxidation reaction with a mono epoxide some indicative results regarding how to protect the cellulose material from the negative impact of water were presented. The protecting effect of the epoxidation were examined by mechanically testing and NMR spectroscopy. It was proposed that by changing the dominant interaction between the fibril aggregates from hydrophilic hydrogen bonds to hydrophobic π-interactions the sensitivity to moisture was much reduced. The results also indicated that the relative reduction in moisture sensitivity was largest for the samples with highest moisture content. / <p>QC 20161229</p>
650

Microwave Line Widths of the Asymmetric Top Formic Acid Molecule

Maynard, Wayne R. 08 1900 (has links)
This work consisted of an experimental investigation of the formic acid (HCOOH) molecule's rotational spectrum. Measurements of line widths were obtained for J = 5, 12, 13, 19, and 20 for a pressure range from 1 to 10 microns. A linear behavior between Av and p was observed as predicted by theory. The line width parameter Avp was observed to depend on the quantum number J. Hard sphere collision diameters b1 were calculated using the obtained AvP values. These deduced hard sphere values were found to be larger than the physical size of the molecule. This result was found to be in general agreement with other investigation in which long range forces (dipole-dipole) dominate.

Page generated in 0.0903 seconds