Spelling suggestions: "subject:"spent fuel"" "subject:"spent quel""
1 |
Physics and engineering aspects of South Africa's proposed dry storage facility for spent nuclear fuelKhoza, Best 28 April 2020 (has links)
The continual increase in electricity dependence for the advancement of society has led to increased demand in electricity globally. This increased demand, among other things such as global warming interventions and energy security have encouraged the need to diversify electricity generation sources. Civilian use of nuclear power dates back to the 1950s. The United States of America and France are currently leading with the highest nuclear power generation in the world, generating 101 GWe and 63 GWe, respectively. Several countries such as China and the United Arab Emirates have committed to new nuclear build in order to increase their nuclear power generation capacities. Standing against the prospects of growth of the nuclear power industry are technical and nontechnical challenges. These include proliferation risk, safety, high capital costs and high-level waste management. Most spent nuclear fuel from power reactors is currently stored in the spent fuel pools on reactor sites, and some have been reprocessed. It is estimated that about 32% (370 000 tons of Heavy Metal) of the total spent fuel generated from power reactors have been reprocessed up to date. With most of the spent fuel pools filling up, alternative interim and long term disposal of spent nuclear fuel solutions have been under investigation from as early as the 1970s. South Africa has planned an interim dry storage facility for the spent nuclear fuel to be established at the existing Koeberg power station. The interim dry storage facility will make use of HI-STAR 100 multi-purpose casks to store spent nuclear fuel until the country decides on final disposal solution. There are many aspects that are critical to safe, efficient and cost-effective long term storage of spent nuclear fuel. Some of the physics and engineering aspects concerning dry storage facilities are briefly discussed. The aspects presented here are: radiation containment, spent fuel, sub-criticality, decay heat removal, site location aspects, response to seismic events, cask corrosion, transportation infrastructure, operability and monitoring. The study of the three existing dry cask storages from the USA, Hungary and Belgium gives an overview of the dry cask technology in use today. These presentations are based on publicly available reliable information. The proposed dry storage facility at Koeberg will be in the existing power station footprint using the HI-STAR 100 casks. The decision to have the proposed dry storage facility at Koeberg will minimise related licence applications and part of security installations as the site already has some security. The location of the facility in the power station’s footprint also allows for cost-effective and safe transportation of casks from the reactor building to the proposed facility. The modularity aspect of the dry cask storage facility at MV Paks in Hungary should also be employed at Koeberg to allow for more storage. This will cater for additional casks that may need to be stored if more nuclear power plants are procured in the future. South Africa’s air traffic around the Western Cape is not as congested as Belgium’s. There is, therefore, no need for the casks to be housed in concrete buildings like Doel’s. Most of Koeberg’s high-level waste would have had a longer cooling time in the pools compared to the minimum cooling time required for the chosen cask technology. This will provide a conservative, safe approach for Koeberg’s facility. Dry cask storage technology has provided a reliable interim dry storage solution for several countries. Despite uncertainties for long term disposal options, the proposed dry cask storage facility at Koeberg is a suitable interim storage alternative for South Africa to allow continuous operation of the plant. This conclusion is based on the physics and engineering aspects that have been presented in this minor dissertation.
|
2 |
Armazenagem de combustivel nuclear queimadoROMANATO, LUIZ S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:49:28Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:16Z (GMT). No. of bitstreams: 0 / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP
|
3 |
Armazenagem de combustivel nuclear queimadoROMANATO, LUIZ S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:49:28Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:16Z (GMT). No. of bitstreams: 0 / Quando um país se torna auto-suficiente em uma parte do ciclo nuclear, quanto à produção de combustível que será usado em suas centrais nucleares para a geração de energia, precisa voltar sua atenção para a melhor forma de armazenar este combustível após a sua utilização. A armazenagem do combustível nuclear queimado é uma prática necessária e utilizada nos dias atuais em todo o mundo como temporária, tanto por países que não têm definido o plano de destinação final, isto é, o repositório definitivo, como também por aqueles que já o possuem. Existem dois aspectos principais que envolvem os combustíveis queimados: um referente à armazenagem do combustível nuclear queimado destinado ao reprocessamento e o outro ao que será enviado para deposição final quando o sítio de deposição definitiva estiver definido, corretamente localizado, adequadamente caracterizado quanto aos diversos aspectos técnicos, e licenciado. Este último aspecto pode envolver décadas de estudos por causa das definições técnicas e normativas em um dado país. No Brasil, o interesse está voltado para a armazenagem dos combustíveis queimados que não serão reprocessados. Este trabalho analisa os tipos possíveis de armazenagem, o panorama internacional e a possível proposta para a futura construção de um sítio de armazenagem temporária no país. / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP
|
4 |
A Study of In-Package Nuclear Criticality in Possible Belgian Spent Nuclear Fuel Repository DesignsWantz, Olivier 16 June 2005 (has links)
About 60 percent of the electricity production in Belgium originates from nuclear power plants. Belgium owns 7 nuclear pressurized water reactors, which are located in two sites: 4 reactors in Doel and 3 reactors in Tihange. Together they have a capacity of approximately 5900 MWe. All these reactors use classical uranium oxide fuel assemblies. Two of them (Doel3, Tihange2) have also accepted a limited number of mixed (uranium and plutonium) oxide fuel assemblies. These mixed fuel assemblies came from the reprocessing of spent uranium oxide fuel assemblies in La Hague (France). The reprocessing of spent fuel gives birth to vitrified high-level waste, and to different isotopes of uranium and plutonium, which can be used in the manufacture of mixed oxide fuel assemblies. Each country producing radioactive waste must find a solution to dispose them safely. The internationally accepted solution is to dispose high-level radioactive waste in a deep and stable geological layer. This seems to be the most secure and environment-friendly way to get rid of the high-level radioactive waste. One of the few stable geological layers, which could accept radioactive waste in Belgium, is the Boom clay layer. Another possible layer is the Ypresian clay layer, but it is not the reference option for the moment. The Boom clay layer is quite thin (about 100 m thick) and is not at a large depth (about 240 m below the ground surface) at the proposed disposal site, beneath the SCK CEN Nuclear Research Centre in Mol. A large number of studies have already been performed on the Boom clay layer, and on the possibility of building a high-level radioactive waste repository in this geological medium. Since 1993, the Belgian government has promulgated a moratorium on the reprocessing of spent uranium oxide fuels in La Hague. Since then, spent fuel assemblies are considered as waste, and ONDRAF/NIRAS (the Belgium Agency for Radioactive Waste and Enriched Fissile Materials) has thus to deal with them as waste. This rises a number of questions on how to deal with this new kind of waste. A solution is to directly dispose these spent fuel assemblies in containers in a repository, just like the other high-level radioactive waste. This repository would be build in the Boom clay layer at a depth of about 240 m beneath the SCK CEN. One of the questions raised by this new kind of waste is: "could the direct disposal of the spent nuclear fuel assemblies lead to nuclear criticality risks in the future?". Nuclear criticality is the ability of a system to sustain a nuclear fission chain reaction. This question was not a key issue with vitrified high-level waste because these do not include fissile uranium and plutonium isotopes, which could lead to a criticality event. The spent fuel repository will be designed in order to totally avoid the occurrence of a criticality event at the closure time. But in the future history of the repository, external events could possibly affect this. These events could maybe lead to criticality inside the repository, and this has also to be avoided. This work tries to answer this question, and to determine how to avoid a long-term criticality event inside the repository. The only complete research work answering this question has been performed in the U.S. for the Yucca Mountain repository but this design is fully different from the Belgian one studied here: for example, the waste are not only spent fuel waste, and the geological layer is volcanic tuff.
The main achievements of this work are:
*A first set of in-package criticality scenarios for different design options for a Belgian spent fuel repository in the Boom clay layer.
*A large number of criticality calculations with different parameters (fuel type, fuel burnup, fuel enrichment, distance between the fuel assemblies, distance between the fuel rods, water fraction inside the overpack) for the different design options.
*A preliminary study of the effects of the spent fuel assemblies isotopic evolution with time on the multiplication factor.
*For the first time, a coupling between the in-package criticality scenarios and the criticality calculations has been performed.
|
5 |
Development of Self-Interrogation Neutron Resonance Densitometry (SINRD) to Measure the Fissile Content in Nuclear FuelLafleur, Adrienne 2011 August 1900 (has links)
The development of non-destructive assay (NDA) capabilities to directly measure the fissile content in spent fuel is needed to improve the timely detection of the diversion of significant quantities of fissile material. Currently, the International Atomic Energy Agency (IAEA) does not have effective NDA methods to verify spent fuel and recover continuity of knowledge in the event of a containment and surveillance systems failure. This issue has become increasingly critical with the worldwide expansion of nuclear power, adoption of enhanced safeguards criteria for spent fuel verification, and recent efforts by the IAEA to incorporate an integrated safeguards regime.
In order to address these issues, the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) has been developed to improve existing nuclear safeguards and material accountability measurements. The following characteristics of SINRD were analyzed: (1) ability to measure the fissile content in Light Water Reactors (LWR) fuel assemblies and (2) sensitivity and penetrability of SINRD to the removal of fuel pins from an assembly. The Monte Carlo Neutral Particle eXtended (MCNPX) transport code was used to simulate SINRD for different geometries. Experimental measurements were also performed with SINRD and were compared to MCNPX simulations of the experiment to verify the accuracy of the MCNPX model of SINRD. Based on the results from these simulations and measurements, we have concluded that SINRD provides a number of improvements over current IAEA verification methods. These improvements include:
1) SINRD provides absolute measurements of burnup independent of the operator’s declaration.
2) SINRD is sensitive to pin removal over the entire burnup range and can verify the diversion of 6% of fuel pins within 3σ from LWR spent LEU and MOX fuel.
3) SINRD is insensitive to the boron concentration and initial fuel enrichment and can therefore be used at multiple spent fuel storage facilities.
4) The calibration of SINRD at one reactor facility carries over to reactor sites in different countries because it uses the ratio of fission chambers (FCs) that are not facility dependent.
5) SINRD can distinguish fresh and 1-cycle spent MOX fuel from 3- and 4-cycles spent LEU fuel without using reactor burnup codes.
|
6 |
Estudo de um casco nacional e sua instalacao para armazenagem seca de combustivel nuclear queimado gerado em reatores PWR / Study of a brazilian cask and its installation for PWR spent nuclear fuel dry storageROMANATO, LUIZ S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:08Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:18Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
7 |
Estudo de um casco nacional e sua instalacao para armazenagem seca de combustivel nuclear queimado gerado em reatores PWR / Study of a brazilian cask and its installation for PWR spent nuclear fuel dry storageROMANATO, LUIZ S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:08Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:18Z (GMT). No. of bitstreams: 0 / O combustível nuclear queimado (CNQ) é retirado do reator nuclear após exaurir sua eficiência de geração de energia. Após ser retirado do reator, esse combustível é temporariamente armazenado em piscinas com água na própria instalação do reator. Durante esse tempo, o calor gerado e os elementos radioativos presentes, de meia-vida média e curta, caem até níveis que permitem retirar o combustível queimado da piscina e enviá-lo para depósitos temporários de via seca. Nessa fase, o material precisa ser armazenado segura e eficazmente de forma que possa ser recuperado em futuro próximo, ou disposto como rejeito radioativo. A quantidade de combustível queimado cresce anualmente e, nos próximos anos, vai aumentar mais ainda por causa da construção de novas instalações de geração de energia de origem nuclear. Nos dias de hoje, o número de instalações novas voltou a atingir os níveis da década de 1970, porque é maior que a quantidade de ações de descomissionamento de instalações antigas. Antes que seja tomada qualquer decisão, seja a de recuperar o combustível remanescente ou considerar o CNQ como rejeito radioativo, o mesmo precisa ser isolado em um dos diferentes tipos de armazenagem existentes no mundo. No presente estudo mostra-se que a armazenagem do CNQ, via seca, em cascos é a opção mais vantajosa. Propõe-se um modelo de casco autóctone para combustível de reatores de potência e de uma instalação de armazenagem para abrigar esses cascos. É um estudo multidisciplinar no qual foi desenvolvida a parte conceitual de engenharia e que poderá ser usada para que o CNQ nacional, retirado dos reatores brasileiros de potência, seja armazenado com segurança por um longo período até que as autoridades brasileiras decidam o local para deposição final. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
8 |
Spent Nuclear Fuel Self-Induced XRF to Predict Pu to U ContentStafford, Alissa Sarah 2010 August 1900 (has links)
The quantification of plutonium (Pu) in spent nuclear fuel is an increasingly important safeguards issue. There exists an estimated worldwide 980 metric tons of Pu in the nuclear fuel cycle and the majority is in spent nuclear fuel waiting for long term storage or fuel reprocessing. This study investigates utilizing the measurement of x-ray fluorescence (XRF) from the spent fuel for the quantification of its uranium (U) to Pu ratio. Pu quantification measurements at the front end of the reprocessing plant, the fuel cycle area of interest, would improve input accountability and shipper/receiver differences.
XRF measurements were made on individual PWR fuel rods with varying fuel ages and final burn-ups at Oak Ridge National Laboratory (ORNL) in July 2008 and January 2009. These measurements successfully showed that it is possible to measure the Pu x-ray peak at 103.7 keV in PWR spent fuel (~1 percent Pu) using a planar HPGe detector. Prior to these measurement campaigns, the Pu peak has only been measured for fast breeder reactor fuel (~40 percent Pu). To understand the physics of the measurements, several modern physics simulations were conducted to determine the fuel isotopics, the sources of XRF in the spent fuel, and the sources of Compton continuum. Fuel transformation and decay simulations demonstrated the Pu/U measured peak ratio is directly proportional to the Pu/U content and increases linearly as burn-up increases. Spent fuel source simulations showed for 4 to 13 year old PWR fuel with burn-up ranges from 50 to 67 GWd/MTU, initial photon sources and resulting Compton and XRF interactions adequately model the spent fuel measured spectrum and background. The detector simulations also showed the contributions to the Compton continuum from strongest to weakest are as follows: the fuel, the shipping tube, the cladding, the detector can, the detector crystal and the collimator end. The detector simulations showed the relationship between the Pu/U peak ratio and fuel burn-up over predict the measured Pu/U peak but the trend is the same. In conclusion, the spent fuel simulations using modern radiation transport physics codes can model the actual spent fuel measurements but need to be benchmarked.
|
9 |
Nuclear forensics: attributing the source of spent fuel used in an RDD eventScott, Mark Robert 29 August 2005 (has links)
An RDD attack against the U.S. is something America needs to prepare against. If such
an event occurs the ability to quickly identify the source of the radiological material used
in an RDD would aid investigators in identifying the perpetrators. Spent fuel is one of
the most dangerous possible radiological sources for an RDD. In this work, a forensics
methodology was developed and implemented to attribute spent fuel to a source reactor.
The specific attributes determined are the spent fuel burnup, age from discharge, reactor
type, and initial fuel enrichment. It is shown that by analyzing the post-event material,
these attributes can be determined with enough accuracy to be useful for investigators.
The burnup can be found within a 5% accuracy, enrichment with a 2% accuracy, and age
with a 10% accuracy. Reactor type can be determined if specific nuclides are measured.
The methodology developed was implemented into a code call NEMASYS. NEMASYS
is easy to use and it takes a minimum amount of time to learn its basic functions. It will
process data within a few minutes and provide detailed information about the results and
conclusions.
|
10 |
Přenos tepla v úložném obalovém souboru a jeho vliv na okolí / Heat transfer in the storage cask and its impact on the environmentMarcell, Jan January 2009 (has links)
The main object of this diploma thesis is solving problems concerning heat transfer in disposal cannister for spent nuclear fuel. In forepart possibilities of conceptual solving according of disposal cannister to particular states are reviwed. On the basis of this a variant of possible protect of a nuclear fuel repository in the Czech republic has been chosen for calculationof a simplified model. Second part is computational solving that was divided into two parts. The first deals with calculation of heat transfer in disposal canister and is done by an analytical method. In the second part is calculation is done by numerical model. In this way region in near surroundings of this model of disposal cannister is analysed. Last part those diploma thesis deals with design of the storage of spacing among disposal canisters as well as optimum placing in underground part of nuclear fuel repository.
|
Page generated in 0.0612 seconds