• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du rôle de l’enzyme déglutamylase CCP5 dans la régulation de la fonction des microtubules au cours de la spermiogenèse chez la souris / Study of the role of the deglutamylating enzyme CCP5 in microtubules function regulation during mouse spermatogenesis

Giordano, Tiziana 13 December 2016 (has links)
La spermatogenèse est le processus par lequel les cellules germinales sont transformées en spermatozoïdes par le déroulement de 3 phases: la phase mitotique et méiotiques et la spermiogénèse. Pendant la spermiogénèse d'importantes structures sont formées afin de générer un spermatozoïde fonctionnel : l’acrosome, la manchette et le flagelle. La manchette est une structure transitoire situé caudalement à l’acrosome, composée par un manteau de microtubules longeant le noyau du spermatide. La manchette est connue pour participer au remodelage du noyau afin de lui conférer une forme falciforme ainsi que pour son rôle dans le développement de l’acrosome et du flagelle. En effet, pendant la spermiogénèse toutes les molécules nécessaires pour la formation du flagelle et de l’acrosome doivent être transportées sur leur site d'assemblage. Les microtubules forment la manchette permettent le mouvement de protéines entre la région pré-acrosomique et la zone d’assemblage du flagelle. Cependant ce transport doit être finement régulé dans l’espace et dans le temps car la localisation aberrante et/ou manquante de certaines protéines peut causer des malformations de l’ acrosome, de la manchette et du flagelle. Un mécanisme qui peut expliquer la façon dont ce processus de transport peut être régulé est la génération de modification post-traductionnelles de la tubuline forment les microtubules car ces modifications peuvent réguler les interactions avec les moteurs moléculaires et les protéines associées aux microtubules. La polyglutamylation correspond à un attachement covalent de chaines de glutamates latérales sur la queue terminale de la tubuline. Cette modification est contrôlée par la coordination des enzymes glutamylase (TTLLs) et déglutamylase (CCPs). De récents études ont souligné l'importance potentielle de certaines de ces enzymes dans la formation et la maintenance du flagelle. Mon projet est centré sur l’étude des fonctions exercées par CCP5 pendant la spermatogenèse chez la souris. CCP5 est le seule enzyme qui a la capacité de couper le glutamate de branchement des chaines latéral et qui peut donc réguler l’équilibre entre présence ou l’absence de glutamate de branchement. L’analyse de la souris CCP5-knockout a permis de souligner le rôle essentiel mené par CCP5 pendant la spermiogénèse. J'ai constaté que les souris CCP5-KO produisent 100 fois moins de sperme, défectueux et immobile, comparé aux contrôles. De plus, des nombreuses cellules haploïdes immatures sont prématurément libérées de l’épithélium germinatif. Une analyse approfondie à révélée que la réduite production de sperme est due à plusieurs défaut ultrastructurelles qui surgissent pendant la spermiogenèse. J’ai observé que l’acrosome n’était pas bien développée et que cela se détachait du noyau chez les spermatides matures condensés. De plus l’organisation des microtubules formant la manchette était aussi affectée par une émanation ectopique, ainsi que par une localisation défectueuse dans le noyau. Ces défauts corrèlent avec la formation des spermatides allongée que n’ont pas la typique forme falciforme. De plus, j’ai constaté la présence de centrioles surnuméraires chez les spermatides allongées CCP5-KO. Ce défaut corrèle avec l’observation de microtubules « doublets » et « singlets » dispersés dans le cytoplasme de la cellule. De plus, les structures accessoires du flagelle se positionnaient, de façon désorganisé, à côté de ces microtubules. On a pu constater que ces microtubules sont très probablement issus de plusieurs axonemes qui s'ouvrent dans leur région. Le processus entier de spermiogenèse semble être défectueux dans la souris CCP5-KO et cela est accompagné par d'importants changements de niveaux de glutamylation chez les spermatides rondes et allongés. Par conséquence la régulation des niveaux de glutamylation faites par CCP5 lors de la spermiogénèse semble être fondamental pour garantir un développement normal des spermatides en spermatozoïdes. / Spermatogenesis is the process by which germ cells are transformed into spermatozoa by three sequential phases: the mitotic- and meiotic- phase followed by spermiogenesis. To allow the final maturation of haploid germ cells into spermatozoa specific structures have to be developed during the spermiogenesis: the acrosome, the manchette and the flagellum. The manchette is a MTs-based structure, located caudally to the acrosome, organizing in a skirt-like fashion. Manchette is known to participate in the shaping of the nucleus conferring it the typical hook-like shape and several studies have underlined its importance in acrosome and flagellum formation. During spermiogenesis all molecules and organelles necessary for both acrosome and flagellum formation have to be transported to their destination sites and manchettal MTs allow the movement of organelles and other proteins between the pro-acrosome region and the spermatid tail. However this MTs-based traffic has to be regulated both in space and time as it has been shown that ectopic or mislocalization of certain proteins can lead to failures in acrosome, manchette and flagellum development. The generation of posttranslationally modified MTs might explain a possible mechanism of traffic regulation since it has been demonstrated that posttranslational modifications (PTMs) can regulate the interaction between MTs and molecular motors and microtubules binding proteins. Polyglutamylation, consist in the addition of glutamate side chains of variable length on α- and β- tubulin carboxy-terminal tails. Glutamylation levels are determined by the combined action of glutamylase (TTLLs) and deglutamylase (CCPs) enzymes. Several reports have recently highlighted the importance of some of these enzymes in flagellum assembly and/or maintenance. During my PhD I investigated about the functional role of CCP5 during mouse spermatogenesis. CCP5 is the only enzyme able to remove the glutamate branching point of the added side chain. Thus, its activity might regulate the equilibrium between presence/absence of glutamate branching points, in turn interfering with polyglutamylation levels. The study of the CCP5-KO mouse reveals that CCP5 has an essential role during mouse spermiogenesis. CCP5-KO male produces 100-fold less sperm cells than controls and released sperm cells are highly defective and immotile. Moreover, haploid immature germ cells are also found in CCP5-KO semen. A deep-analysis reveals that the reduced sperm output is due to several ultrastructural defects emerging during the spermatids differentiation process. The acrosome, although is still formed, it does not appear to develop symmetrically and appears to detach from the nucleus in condensed spermatids. Another structure that is impaired in CCP5-KO spermatids in the manchette. Manchettal MTs, are seen to emanate from ectopic regions of the germ cells without running parallel to the nucleus, and are often observed within the spermatids nuclei. Altogether these defects correlate with an aberrant-shaped spermatid nucleus not showing the typical hook-like shape. Another phenotype observed in CCP5-KO elongating spermatids is the presence of supernumerary basal bodies that correlates with the presence of singlet or doublets microtubules dispersed within the germ cell cytoplasm. Interestingly sperm accessory structures are seen to chaotically organize around the microtubules. Unstable disassembling axonemes are seen together with those MTs, suggesting that CCP5-KO spermatids develop abortive unstable flagella. Interesting all these ultrastructural defects correlate with increased level of glutamylation on round spermatids’ cortical MTs and elongating spermatids’ manchettal MTs. Taken together, this study strongly suggests that CCP5-mediated glutamylation regulation is fundamental for spermatids differentiation into healthy functional spermatozoa.
2

Rôle de la protéine à double bromodomaine BRDT dans le remodelage de la chromatine au cours de la spermatogenèse / Chromatin reorganization during spermatogenesis : double bromodomain protein BRDT multiple task

Gaucher, Jonathan 20 December 2011 (has links)
BRDT et la réorganisation de la chromatine au cours de la spermatogénèsePendant la spermiogenèse, phase haploïde de la gamétogenèse mâle, le génome mâle subit une réorganisation majeure, durant laquelle la plupart des histones sont enlevées et remplacées par les protéines de transition (TP) et les protamines. Ce processus conduit à la compaction extrême du génome mâle au sein du noyau du spermatozoïde.Dans les spermatides allongées, les histones sont hyperacetylées juste avant leur éviction. Nous avons émis l'hypothèse que cette acétylation massive des histones pourrait être un signal pour l'enlèvement des histones et le recrutement de la machinerie de remodelage de la chromatine. BRDT est une protéine spécifique du testicule, appartenant à la famille BET, qui possède deux bromodomaines capables de reconnaitre les histones acétylées et qui a la capacité unique de compacter la chromatine hyperacétylée (Pivot-Pajot et al., 2003). Le premier bromodomaine de BRDT apparait crucial pour ces fonctions (Morinière et al., 2009). Les souris porteuses d'une délétion du premier bromodomaine de BRDT, BD1, présentent une stérilité des mâles associée à des anomalies survenant lors de la spermiogenèse (Shang et al, 2007). Nous avons pu caractériser la fonction physiologique du premier bromodomaine de BRDT et montrer son rôle crucial dans le remplacement des histones hyperacétylées par les TP et les protamines au cours de la spermiogenèse.Afin d'explorer les fonctions potentielles des autres domaines de BRDT, nous avons étudié des souris ayant une invalidation génétique complète de Brdt. Cette perte de BRDT engendre aussi une stérilité mâle, mais le phénotype montre une absence totale de cellules post-méiotiques. Enfin, un troisième modèle de souris a été obtenu suite à notre tentative de produire des souris porteuses d'une version tagguée de la protéine. L'exploration de ces modèles a permis de démontrer un rôle de BRDT, indépendant de la présence de BD1, dans la régulation du programme d'expression des gènes lors de l'entrée en méiose.BRDT possède à la fois une fonction méiotique et post-méiotique avec l'implication de différents domaines protéiques. / Involvement of BRDT in chromatin reorganization during spermatogenesisDuring spermiogenesis, the haploid phase of male gametogenesis, the male genome undergoes a major chromatin reorganization, during which most histones are removed and replaced by transition proteins (TP) and protamines. This process led to the extreme compaction of the genome in the male sperm nucleus.In elongating spermatids, histones are hyperacetylated just before their eviction. We have hypothesized that acetylation of histones mass could be a signal for the removal of histones and recruitment of chromatin remodeling machinery. BRDT is a testis-specific protein, xhich belongs to the BET family, which has two bromodomains able to recognize acetylated histones and has the unique ability to compact hyperacetylated chromatin (Pivot-Pajot et al., 2003). The first of bromodomain BRDT appears crucial for these functions (Morinière et al., 2009). Mice carrying a deletion of the first bromodomaine BRDT, BD1, exhibit male sterility associated with abnormalities occurring during spermiogenesis (Shang et al, 2007). We were able to characterize the physiological function of the first bromodomaine BRDT and demonstrate its crucial role in the replacement of hyperacetylated histones by TP and protamines during spermiogenesis.To explore the potential functions of other domains of the BRDT protein, we have studied mice with invalidation of the Brdt gene. This loss of BRDT also produces male sterility, but the phenotype shows a complete lack of post-meiotic cells. A third mouse model was obtained following our attempt to produce mice with a version of taggued protein. The exploration of these models has demonstrated a role of BRDT, independent of the presence of BD1, in regulating the program of gene expression during entry into meiosis.BRDT has both functions in meiotic and post-meiotic meiotic with the involvement of different protein domains.

Page generated in 0.0649 seconds