• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • Tagged with
  • 25
  • 25
  • 16
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Propriedades eletrônicas dos isolantes topológicos / Electronic properties of Topological Insulators

Leonardo Batoni Abdalla 05 February 2015 (has links)
Na busca de um melhor entendimento das propriedades eletrônicas e magnéticas dos isolantes topológicos nos deparamos com uma das suas caraterísticas mais marcantes, a existência de estados de superfície metálicos com textura helicoidal de spin os quais são protegidos de impurezas não magnéticas. Na superfície estes canais de spin possuem um potencial enorme para aplicações em dispositivos spintrônicos. Muito há para se fazer e o tratamento via cálculos de primeiros princípios por simulações permite um caráter preditivo que corrobora na elucidação de fenômenos físicos via análises experimentais. Nesse trabalho analisamos as propriedades eletrônicas de isolantes topológicos tais como: (Bi,Sb)$_2$(Te,Se)$_3$, Germaneno e Germaneno funcionalizado. Cálculos baseados em DFT evidenciam a importância das separações entre as camadas de Van der Waals nos materiais Bi$_2$Se$_3$ e Bi$_2$Te$_3$. Mostramos que devido a falhas de empilhamento, pequenas oscilações no eixo de QLs (\\textit{Quintuple Layers}) podem gerar um desacoplamento dos cones de Dirac, além de criar estados metálicos na fase \\textit{bulk} de Bi$_2$Te$_3$. Em se tratando do Bi$_2$Se$_3$ um estudo sistemático dos efeitos de impurezas de metais de transição foi realizado. Observamos que há quebra de degenerescência do cone de Dirac se houver magnetização em quaisquer dos eixos. Além disso se a magnetização permanecer no plano, além de uma pequena quebra de degenerescência, há um deslocamento do mesmo para outro ponto da rede recíproca. No entanto, se a magnetização apontar para fora do plano a quebra ocorre no próprio ponto $\\Gamma$, porém de maneira mais intensa. Importante enfatizar que além de mapear os sítios com suas orientações magnéticas de menor energia observamos que a quebra da degenerescência está diretamente relacionada com a geometria local da impureza. Isso proporciona imagens de STM distintas para cada sítio possível, permitindo que um experimental localize cada situação no laboratório. Estudamos ainda a transição topológica na liga (Bi$_x$Sb$_{1-x}$)$_2$Se$_3$, onde identificamos um isolante trivial e topológico para $x=0$ e $x=1$. Apesar de óbvia a existência de tal transição, detalhes importantes ainda não estão esclarecidos. Concluímos que a dopagem com impurezas não magnéticas proporciona uma boa técnica para manipulação e engenharia de cone nesta família de materiais, de forma que dependendo da faixa de dopagem podemos eliminar a condutividade que advém do \\textit{bulk}. Finalmente estudamos superfícies de Germaneno e Germaneno funcionalizado com halogênios. Usando uma funcionalização assimétrica e com a avalição do invariante topológico $Z_2$ notamos que o material Ge-I-H é um isolante topológico podendo ser aplicado na elaboração de dispositivos baseados em spin. / In the search of a better understanding of the electronic and magnetic properties of topological insulators we are faced with one of its most striking features, the existence of metallic surface states with helical spin texture which are protected from non-magnetic impurities. On the surface these spin channels allows a huge potential for applications in spintronic devices. There is much to do and treating calculations via \\textit{Ab initio} simulations allows us a predictive character that corroborates the elucidation of physical phenomena through experimental analysis. In this work we analyze the electronic properties of topological insulators such as: (Bi, Sb)$_2$(Te, Se)$_3$, Germanene and functionalized Germanene. Calculations based on DFT show the importance of the separation from interlayers of Van der Waals in materials like Bi$_2$Se$_3$ and Bi$_2$Te$_3$. We show that due to stacking faults, small oscillations in the QLs axis (\\textit{Quintuple Layers}) can generate a decoupling of the Dirac cones and create metal states in the bulk phase Bi$_2$Te$_3$. Regarding the Bi$_2$Se$_3$ a systematic study of the effects of transition metal impurities was performed. We observed that there is a degeneracy lift of the Dirac cone if there is any magnetization on any axis. If the magnetization remains in plane, we observe a small shift to another reciprocal lattice point. However, if the magnetization is pointing out of the plane a lifting in energy occurs at the very $ \\Gamma $ point, but in a more intense way. It is important to emphasize that in addition to mapping the sites with their magnetic orientations of lower energy we saw that the lifting in energy is directly related to the local geometry of the impurity. This provides distinct STM images for each possible site, allowing an experimental to locate each situation in the laboratory. We also studied the topological transition in the alloy (Bi$_x$Sb$_{1-x}$)$_ 2$Se$_3$, where we identify a trivial and topological insulator for $x = 0$ and $x = 1$. Despite the obvious existence of such a transition, important details remain unclear. We conclude that doping with non-magnetic impurities provides a good technique for handling and cone engineering this family of materials so that depending on the range of doping we can eliminate conductivity channels coming from the bulk. Finally we studied a Germanene and functionalized Germanene with halogens. Using an asymmetrical functionalization and with the topological invariant $Z_2$ we noted that the Ge-I-H system is a topological insulator that could be applied in the development of spin-based devices.
22

Estrutura eletrônica e magnética sob altas pressões : metais de transição 3d/5d e terras raras / Electronic and magnetic structure under high pressures : 3d/5d transition metals and rare earths

Veiga, Larissa Sayuri Ishibe, 1987- 27 August 2018 (has links)
Orientadores: Narcizo Marques de Souza Neto, Flávio Cesar Guimarães Gandra / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-27T10:57:14Z (GMT). No. of bitstreams: 1 Veiga_LarissaSayuriIshibe_D.pdf: 10330689 bytes, checksum: 72bdd1a8fad1f82f880bb2c86fcd6a9e (MD5) Previous issue date: 2015 / Resumo: Este trabalho teve como objetivo a investigação de diversos mecanismos físicos provenientes das estruturas eletrônicas, magnéticas e cristalinas de sistemas ternários de terras raras e metais de transição 3d-5d através do uso das técnicas de espectroscopia de absorção de raios X e difração de raios X sob altas pressões. Dentre os fenômenos físicos estudados em função da compressão da rede cristalina induzida pela aplicação da pressão estão o magnetismo proveniente dos orbitais 4f e 5d nos sistemas ternários RERh4B4 (com RE = Dy e Er), os efeitos do campo elétrico cristalino e as interações de troca magnéticas nas perovskitas duplas 3d-5d (AFeOsO6, com A = Ca e Sr) e o acoplamento spin-órbita nos metais de transição 5d. As propriedades eletrônicas e magnéticas dos orbitais 4f e 5d das terras raras nos compostos da família RERh4B4 (RE = Dy e Er) foram investigadas através de experimentos de XANES e XMCD sob altas pressões na borda L3 do Dy e Er . Os sinais magnéticos das contribuições quadrupolar (2p3/2-> 4f) e dipolar (2p3/2->5d) presentes nos espectros de XMCD, em ambos os compostos, diminuem progressivamente em função da pressão. Este comportamento foi explicado em termos das interações de troca magnéticas entre os íons de terras raras, que são enfraquecidas pelas alterações locais da estrutura atômica induzidas pela compressão da rede cristalina. Já no sistema de perovskitas duplas, foi demonstrado que a compressão da estrutura Sr2FeOsO6, com um arranjo cristalino ordenado dos íons de Fe (3d) e Os (5d), permite o controle contínuo e reversível da coercividade e magnetização de saturação. Este efeito foi explicado em termos do aumento do campo elétrico cristalino em função da pressão, que altera as interações de troca magnéticas Fe-O-Os e transforma o material com magnetização remanente e coercividade praticamente nulas a pressão ambiente em outro com uma coercividade robusta (~0.5 T) e magnetização de saturação expressiva a pressões acima de ~10 GPa. Por fim, a última parte desta tese de doutorado foi dedicada ao uso da seletividade química e orbital da técnica de XANES na investigação do acoplamento spin-órbita nos elementos Pt (Pt0, 5d9) e Hf (Hf0, 5d2) sob altas pressões. Ao contrário do observado para a Pt, o cálculo do branching ratio a partir dos espectros de absorção nas bordas L2,3 do Hf revelaram que o acoplamento spin-órbita aumenta monotonicamente em função da pressão aplicada. Esse comportamento foi relacionado às propriedades supercondutoras e estruturais presentes nesse elemento sob altas pressões / Abstract: The scientific goal of this work has been the investigation of several physical mechanisms derived from the electronic, magnetic and structural properties of ternary rare earth and transition metal systems by means of X-ray absorption spectroscopy and X-ray diffraction techniques in a diamond anvil cell. Among the physical properties studied as a function of lattice compression induced by applied pressure are the magnetism of the 4f and 5d orbitals in tetragonal rare earth rhodium borides RERh4B4 (with RE = Dy e Er), the crystal electric field effects and magnetic exchange interactions in 3d-5d double perovskite systems (A2FeOsO6, with A = Ca e Sr) and the spin-orbit coupling in 5d transition metals. The electronic and magnetic properties of the rare earth 4f and 5d orbitals in the RERh4B4 (RE = Dy e Er) systems were investigated through high pressure XANES and XMCD experiments at Dy and Er L3 edges. For both compounds, the magnetic signals of the quadrupole (2p3/2->4f) and dipole (2p3/2->5d) contributions to the XMCD spectra progressively decrease as a function of pressure. This behavior was explained in terms of the magnetic exchange interactions between the rare earth ions, which are weakened by changes in the local atomic structure induced by compression of the crystal lattice. In the double perovskite system, it has been shown that compression of Sr2FeOsO6 structure with an ordered crystalline arrangement of iron (3d) and osmium (5d) transition metal ions, allows for continuous and reversible control of magnetic coercivity and saturation magnetization. This effect was explained in terms of enhanced crystal electric fields under high pressure, which alter the Fe-O-Os magnetic exchange interactions and transform the material with an otherwise mute response to magnetic fields into one with a strong coercivity (~0.5 T) and substantial saturation magnetization at pressures above ~10 GPa. Finally, the last part of this thesis is dedicated to the use of chemical and orbital selectivity of XANES technique as a tool to investigate the spin-orbit coupling in Pt (Pt0, 5d9) and Hf (Hf0, 5d2) elements under high pressures. Unlike observed for Pt, the calculated branching ratio determined from the integrated intensities of the Hf L2,3 white lines shows that the spin-orbit coupling increases monotonically as a function of applied pressure. This behavior was related to the superconducting and structural properties displayed by this element at high pressures / Doutorado / Física / Doutora em Ciências
23

Relaxação de spin via D\'yakonov-Perel\' em poços quânticos com acoplamento spin-órbita intersub-banda / D\'yakonov-Perel\' Spin Relaxation in Quantum Wells with Intersubband Spin-Orbit Interaction

Candido, Denis Ricardo 24 July 2013 (has links)
Em sistemas com acoplamento spin-órbita (SO) é possível manipular eletricamente o spin do elétron via a aplicação de um campo elétrico.1 Isso permite a potencial aplicação do grau de liberdade de spin (Spintronica) no desenvolvimento de novos dispositivos e tecnologias, como por exemplo na tecnologia da informação (computação quântica).2,3 No entanto, sabe-se que a interação SO causa efeitos indesejáveis, como por exemplo a relaxação e o defasamento de spin.4 Dessa maneira, do ponto de vista de aplicações, torna-se desejável maximizar o tempo de vida do spin. Neste trabalho, investigamos a relaxação de spin dos elétrons de condução em poços quânticos com duas sub-bandas5 crescidos ao longo das direções [001] e [110] via o mecanismo de D\'yakonov-Perel\'.6 Combinando teoria de grupos, o método k.p, a aproximação da função envelope e teoria de perturbação de Löwdin obtemos um Hamiltoniano efetivo para os elétrons da banda de condução na presença das interações SO de Rashba e Dresselhaus. Aqui, diferentemente de alguns trabalhos anteriores,7,8 além de incluir o termo cúbico de Dresselhaus, também levamos em conta as contribuições devido à influência da segunda sub-banda de mais baixa energia do poço. A partir deste Hamiltoniano derivamos expressões para os tempos de relaxação do spin e analisamos como estas novas contribuições (termos do acoplamento com a segunda sub-banda) afetam os tempos de vida dos spins. Comparamos os tempos de relaxação para as direções [001] com os calculados para a direção [110]. Nossos resultados mostram que as contribuições devido à segunda sub-banda são desprezíveis para ambas as direções. Mostramos também que o tempo de relaxação para a direção [110] é mais longo que o da [001], resultado consistente com experimentos9,10 e outros trabalhos teóricos anteriores.7 / In systems with spin-orbit (SO) coupling, it is possible to electrically manipulate the electron spin via applied gate voltages.1 This allows for the potential use of the spin degree of freedom (Spintronics) in the development of new devices and technologies, for instance information technology (quantum computing).2,3 It is known however, that the SO interaction leads to the undesired effect of causing spin relaxation and spin dephasing.4 Thus from the point of view of applications, it is desirable to maximize the spin lifetimes. Here, we investigate the spin relaxation of the conduction electrons in quantum wells with two sub-bands5 grown along the [001] and [110] directions via the D\'yakonov-Perel\' mechanism.6 By combining group theory, the k.p method, the envelope function approach and the Löwdin perturbation theory, we obtain an effective Hamiltonian for the conduction electrons in the presence of the Rashba and Dresselhaus SO interactions. Differently from some early works,7,8 in addition to the cubic Dresselhaus term, we also account for the contributions arising from the second lowest sub-band of the well. We derive expressions for the spin relaxation times and analyze how the new contributions (second sub-band terms) affect the spin lifetimes. We compare the relaxation times obtained in the [001] direction with those calculated for the [110] direction. Our results show that the contributions from the second sub-band are negligible for both directions. We also find that the relaxation time in the [110] direction is longer than the one in the [001], a result consistent with experiments9,10 and earlier theoretical works.7
24

Transport phenomena in quasi-one-dimensional heterostructures

Dias, Mariama Rebello de Sousa 21 February 2014 (has links)
Made available in DSpace on 2016-06-02T20:15:31Z (GMT). No. of bitstreams: 1 5844.pdf: 11430873 bytes, checksum: b80a5790a9ebf6ae63ff48e52968ae60 (MD5) Previous issue date: 2014-02-21 / Universidade Federal de Sao Carlos / O crescimento e caracterização de sistemas de heteroestruturas semicondutoras quasi-unidimensionais têm atraído grande interesse devido à sua potencial de aplicação tecnológica, como foto-detectores, dispositivos opto-eletrônicos assim como seu para o processamento de informação quântica e aplicações em fotônica. O objetivo desta tese é o estudo das propriedades de transporte eletrônico e de spin em sistemas semicondutores quasi-unidimensionais, especificamente trataremos de nanofios (NWs) homogêneos, NWs acoplados, NWs do tipo plano-geminado (TP), diodos de tunelamento ressonante (ETD) e cadeias de pontos quânticos (QDCS). Escolhemos o método k-p, particularmente o Hamiltoniano de Luttinger, para descrever os efeitos de confinamento e tensão biaxial. Este sugeriu uma modulação do caráter do estado fundamental que, complementada com a dinâmica fônons fornecidas pelas simulações da Dinâmica Molecular (MD), permitiu a descrição da modulação da mobilidade de buracos por emissão ou absorção de fônons. Em relação ao sistema de NWs acoplado,estudamos, através do método da matriz de transferência (TMM), as propriedades de transporte de elétrons e spin sob a interação de spin-órbita (SOI) de Eashba, localizada na região de acoplamento entre fios. Foram consideradas várias configurações de tensões de gate (Vg) aplicadas nos fios. Desse modo, compreendemos a modulação do transporte de spin quando esse é projetado no direção-z através da combinação do SOI e das dimensionalidades do sistema. Da mesma forma, a combinação de SOI e da Vg aplicada deu origem a modulação da polarização, quando o spin medido é projetado na mesma direção em que o SOI de Eashba atua, a direção y. Usando o TMM, exploramos as propriedades de transporte de um DBS e o efeito de uma resistência em série com o intuito de provar a natureza da biestabilidade das curvas características I V bem como o aumento de sua área com temperatura, resultados fornecidos por experimentos. O modelo indicou que aumentando da resistência pela diminuição sa temperatura aumenta a área biestável. A presença de uma hetero-junção adicional ao sistema induz uma densidade de carga nas suas interfaces. De acordo com esta configuração, a queda de tensão total do ETDS muda, podendo ser confirmada experimentalmente. A formação dos peculiares campos de deformação e sua influência sobre a estrutura eletrônicas e propriedades de transporte em superredes de TP foi estudada sistematicamente. Assim, as propriedades de transporte, de ambos os elétrons e buracos, pode ser sintonizada eficientemente, mesmo no caso de elétrons r em sistemas de blenda de zinco, contrastando com a prevista transparência de elétrons r em superredes de semicondutores III-V heteroestruturados. Além disso, constatamos que a probabilidade de transmissão para buracos da banda de valência também poderia ser efetivamente modificada através de uma tensão externa.Por fim, colaboradores sintetizaram com sucesso sistemas de QDCs de InGaAs através da epitaxia de feixe molecular e engenharia de tensão. Um comportamento anisotrópico da condutância com a temperatura foi observado em QDCs com diferentes concentrações de dopagem, medida realizada ao longo e entre os QDCs. O modelo teórico 1D de hoppíng desenvolvido mostrou que a presença de estados OD modela a resposta anisotrópica da condutância neste sistemas. / The growth and characterization of semiconductor quasi-one-dimensional heterostructure systems have attracted increasing interest due to their potential technological application, like photo-detectors, optoelectronic devices and their promising features for quantum information processing and photonic applications. The goal of this thesis is the study of electronic and spin transport properties on quasi-one-dimensional semiconductor systems; specifically, homogenous nanowires (NWs), coupled NW s, twin-plane (TP) NWs, resonant tunneling diodes (RTDs), and quantum dot chains (QDCs). The k-p method, in particular the Luttinger Hamiltonian, was chosen to describe the effects of biaxial confinement and strain. This suggested a modulation of the ground state character that, complemented with the phonon dynamics provided by Molecular Dynamics (MD) simulations, allowed the description of the hole mobility modulation by either phonon emission or absorption. Regarding the coupled NW s system, the electron and spin transport properties affected by a Rashba spin-orbit interaction (SOI) at the joined region were unveiled through the Transfer Matrix Method (TMM). Various configurations of gate voltages (Vg), applied on the wire structure, were considered. We were able to understand the modulation of the spin transport projected in the z-direction trough the combination of the SOI and the system dimensionalities. Likewise, the combination of SOI and applied Vg gave rise to a modulation of the polarization, when the measured spin is projected in the same direction where the Rashba SOI acts, the y-direction. The transport properties of a DBS and the effect of a resistance in series was explored within the TMM to prove the nature of a bistability of the I V characteristics and its enhanced area with temperature provided by the experiment. The model indicates that increasing the resistente by decreasing the temperature, the bistable area enhances. The presence of an additional heterojunction induces a sheet charge at its interfaces. Under this configuration, the total voltage drop of the RTD changes and can be confirmed experimentally.The formation of the peculiar strain fields and their influence on the electronic structure and transport properties of a TP superlattice was systematically studied. Hence, the transport properties of both electrons and holes could be effectively tuned even in the case of T-electrons of zincblende systems, contrasting to the predicted transparency of T-electrons in heterolayered III-V semiconductor superlattices. Also, the transmission probability for holes at valence band could also be effectively modified by applying an external stress. Finally, using molecular-beam-epitaxy and skillful strain engineering, systems of In-GaAs QDCs were successfully synthesized by collaborators. The QDCs with different doping concentrations showed an anisotropic behavior of the conductance, measured along and across the QDCs, with temperature. The theoretical ID hopping model developed found that the presence of OD states shapes the anisotropic response of the conductance in this system.
25

Relaxação de spin via D\'yakonov-Perel\' em poços quânticos com acoplamento spin-órbita intersub-banda / D\'yakonov-Perel\' Spin Relaxation in Quantum Wells with Intersubband Spin-Orbit Interaction

Denis Ricardo Candido 24 July 2013 (has links)
Em sistemas com acoplamento spin-órbita (SO) é possível manipular eletricamente o spin do elétron via a aplicação de um campo elétrico.1 Isso permite a potencial aplicação do grau de liberdade de spin (Spintronica) no desenvolvimento de novos dispositivos e tecnologias, como por exemplo na tecnologia da informação (computação quântica).2,3 No entanto, sabe-se que a interação SO causa efeitos indesejáveis, como por exemplo a relaxação e o defasamento de spin.4 Dessa maneira, do ponto de vista de aplicações, torna-se desejável maximizar o tempo de vida do spin. Neste trabalho, investigamos a relaxação de spin dos elétrons de condução em poços quânticos com duas sub-bandas5 crescidos ao longo das direções [001] e [110] via o mecanismo de D\'yakonov-Perel\'.6 Combinando teoria de grupos, o método k.p, a aproximação da função envelope e teoria de perturbação de Löwdin obtemos um Hamiltoniano efetivo para os elétrons da banda de condução na presença das interações SO de Rashba e Dresselhaus. Aqui, diferentemente de alguns trabalhos anteriores,7,8 além de incluir o termo cúbico de Dresselhaus, também levamos em conta as contribuições devido à influência da segunda sub-banda de mais baixa energia do poço. A partir deste Hamiltoniano derivamos expressões para os tempos de relaxação do spin e analisamos como estas novas contribuições (termos do acoplamento com a segunda sub-banda) afetam os tempos de vida dos spins. Comparamos os tempos de relaxação para as direções [001] com os calculados para a direção [110]. Nossos resultados mostram que as contribuições devido à segunda sub-banda são desprezíveis para ambas as direções. Mostramos também que o tempo de relaxação para a direção [110] é mais longo que o da [001], resultado consistente com experimentos9,10 e outros trabalhos teóricos anteriores.7 / In systems with spin-orbit (SO) coupling, it is possible to electrically manipulate the electron spin via applied gate voltages.1 This allows for the potential use of the spin degree of freedom (Spintronics) in the development of new devices and technologies, for instance information technology (quantum computing).2,3 It is known however, that the SO interaction leads to the undesired effect of causing spin relaxation and spin dephasing.4 Thus from the point of view of applications, it is desirable to maximize the spin lifetimes. Here, we investigate the spin relaxation of the conduction electrons in quantum wells with two sub-bands5 grown along the [001] and [110] directions via the D\'yakonov-Perel\' mechanism.6 By combining group theory, the k.p method, the envelope function approach and the Löwdin perturbation theory, we obtain an effective Hamiltonian for the conduction electrons in the presence of the Rashba and Dresselhaus SO interactions. Differently from some early works,7,8 in addition to the cubic Dresselhaus term, we also account for the contributions arising from the second lowest sub-band of the well. We derive expressions for the spin relaxation times and analyze how the new contributions (second sub-band terms) affect the spin lifetimes. We compare the relaxation times obtained in the [001] direction with those calculated for the [110] direction. Our results show that the contributions from the second sub-band are negligible for both directions. We also find that the relaxation time in the [110] direction is longer than the one in the [001], a result consistent with experiments9,10 and earlier theoretical works.7

Page generated in 0.0582 seconds