• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coherent light sources with spin-polarized current / Source de lumière cohérente avec courant polarisé en spin

Fördös, Tibor 10 July 2018 (has links)
Les spin-lasers sont des dispositifs semi-conducteurs dans lesquels les processus de recombinaison radiative impliquant des porteurs polarisés en spin résultent en une émission de photons polarisés circulairement. Néanmoins, des anisotropies linéaires supplémentaires dans la cavité conduisent généralement à une émission laser préférentiellement polarisée linéairement et à un éventuel couplage entre modes. Dans cette thèse, une méthode générale pour la modélisation de lasers à semi-conducteurs tels que laser à surface verticale (externe) à cavité et contenant des puits quantiques multiples et impliquant des anisotropies pouvant révéler (i) une biréfringence linéaire locale due au champ de déformation à la surface ou (ii) une biréfringence dans les puits quantiques due au couplage d'amplitude de phase provenant de la réduction du D2d biaxial au groupe de symétrie C2v aux interfaces semiconductrices ternaires III-V. Une nouvelle méthode récursive à matrice S de diffusion est mise en œuvre en utilisant un tenseur de gain dérivé analytiquement des équations de Maxwell-Bloch. Il permet de modéliser les propriétés de l'émission (seuil, polarisation, dédoublement de mode) du laser avec plusieurs zones actives à puits quantiques en recherchant les modes propres résonnants de la cavité. La méthode est démontrée sur des structures laser réelles et est utilisée pour l'extraction de tenseurs de permittivité optique de déformation de surface et de puits quantiques en accord avec des expériences. La méthode est généralisée pour trouver les modes propres au laser dans le cas le plus général des pompes polarisées circulaires (déséquilibre entre les canaux de spin-up et de spin-down) et le dichroïsme à gain linéaire. De plus, la mesure de la matrice de Mueller 4x4 complète pour des angles d'incidence multiples et des angles azimutaux dans le plan a été utilisée pour l'extraction de tenseurs de permittivité optique de couches contraintes superficielles et de puits quantiques. Une telle dépendance spectrale des éléments tensoriels optiques est cruciale pour la modélisation des modes propres du laser de spin, les conditions de résonance, et aussi pour la compréhension des sources d'anisotropies de structure. / Spin-lasers are semiconductor devices in which the radiative recombination processes involving spin-polarized carriers result in an emission of circularly polarized photons. Nevertheless, additional linear in-plane anisotropies in the cavity generally lead in preferential linearly-polarized laser emission and to possible coupling between modes. In this thesis, a general method for the modeling of semiconductor laser such as vertical-(external)-cavity surface-emitting laser containing multiple quantum wells and involving anisotropies that may reveal i) a local linear birefringence due to the strain field at the surface or ii) a birefringence in quantum wells (QWs) due to phase amplitude coupling originating from the reduction of the biaxial D2d to the C2v symmetry group at the III-V ternary semiconductor interfaces. A novel scattering S-matrix recursive method is implemented using a gain tensor derived analytically from the Maxwell-Bloch equations. It enables to model the properties of the emission (threshold, polarization, mode splitting) from the laser with multiple quantum well active zones by searching for the resonant eigenmodes of the cavity. The method is demonstrated on real laser structures and is used for the extraction of optical permittivity tensors of surface strain and quantum wells in agreement with experiments. The method is generalized to find the laser eigenmodes in the most general case of circular polarized pumps (unbalance between the spin-up and spin-down channels) and linear gain dichroism. In addition, the measurement of full 4x4 Mueller matrix for multiple angles of incidence and in-plane azimuthal angles has been used for extraction of optical permittivity tensors of surface strained layers and quantum wells. Such spectral dependence of optical tensor elements are crucial for modeling of spin-laser eigenmodes, resonance conditions, and also for understanding of sources of structure anisotropies.
2

Development and application of the k.p method to investigate spin and optical properties of semiconductor nanostructures / Desenvolvimento e aplicação do método k.p para investigar propriedades óticas e de spin em nanostruturas semicondutoras

Faria Júnior, Paulo Eduardo de 30 June 2016 (has links)
Many observable properties of semiconductor systems, such as transport and optical transitions, are manifestations of their underlying electronic band structures, i. e., the energy levels that electrons may have in the semiconductor. Among the theoretical approaches to calculate the band structure, the k.p method is a versatile framework that can be extended to deal with confined systems, overcoming the computational limitations of first principles methods. In this thesis, we develop and apply k.p Hamiltonians to investigate spin and optical physical phenomena in unconventional semiconductor systems. Specifically, we addressed three different topics: spin lasers, polytypism in III-V semiconductors and spin-orbit coupling effects in wurtzite materials. For spin lasers, we investigate the behavior of their active region, in a VCSEL geometry, based on GaAs/AlGaAs zinc-blende quantum wells by calculating the spin-dependent gain coefficient. Assuming spin polarized electrons, our calculations showed the spin-filtering and the threshold reduction features found in experiments and by the conventional rate equation approach in the steady-state operation. Motivated by experimental evidence of enhanced dynamic operation for light polarization because of anisotropies in the semiconductor system, we calculate the birefringence coefficient of the active region under uniaxial strain. Our calculations showed that, even for a small value of applied strain, the birefringence coefficient can easily exceed 200 GHz. In fact, our predictions were experimentally demonstrated for values up to 250 GHz in similar GaAs/AlGaAs spin VCSELs. For the polytypism topic, we develop a k.p model combined with the envelope function approximation to investigate the polytypismin III-V semiconductor systems with mixed zinc-blende and wurtzite crystal structures. We apply our model for InP polytypic quantum wells to investigate quantum confinement and strain effects. We then extended this polytypic model to include the explicit coupling between the conduction and the valence bands in order to investigate optical properties in InP polytypic superlattices. For pure phase nanowires, modeled with bulk calculations and the optical confinement, we can see the same experimental trends regarding the light polarization, i. e., zinc-blende phase favors light polarization along the nanowire axis while wurtzite phase favors the polarization perpendicular to the axis. Including the crystal phase mixing and the quantum confinement effects, we obtain the degree of light polarization ranging from pure zinc-blende to pure wurtzite nanowires and, more specifically, that this degree of polarization is very sensitive to the size of zinc-blende regions, a feature that is also observed in photoluminescence measurements. Finally, we develop a realistic k.p Hamiltonian, with parameters obtained from ab initio band structures, to investigate electronic properties and spin-orbit coupling effects in InAs and InP semiconductors with wurtzite structure. Our 8×8 k.p model describes the conduction and the valence bands, including spin, around the energy gap. We also include the k-dependent spin-orbit coupling term, usually neglected in the literature, to correctly describe the bulk inversion asymmetry of wurtzite structure. We show that all the investigated energy bands have a spin expectation value that follows a Rashba-like spin texture, with either clockwise or counter clockwise orientation. We emphasize that all the ab initio features of band structure, spin splittings and spin orientation were systematically checked to provide the best parameter sets. Using the 8×8 k.p Hamiltonian, we calculated the density of states and predicted the carrier density as a function of the Fermi energy. We also provide an analytical approach for conduction band and a compact description for the valence bands, however, the 8×8 Hamiltonian is the best approach to recover the ab initio calculations around a large region of the first Brillouin zone. / Diversas propriedades observáveis de sistemas semicondutores, como transporte e transições óticas, são manifestações de suas estruturas de bandas eletrônica, isto é, os níveis energéticos que elétrons podem ocupar no semicondutor. Entre as abordagens teóricas para o cálculo de estrutura de bandas, o método k.p é uma ferramenta versátil que pode ser estendida para tratar sistemas confinados, superando as limitações computacionais de métodos de primeiros princípios. Nesta tese, nós desenvolvemos e aplicamos Hamiltonianos k.p para fenômenos físicos óticos e de spin em sistemas semicondutores não convencionais. Especificamente, nós consideramos três tópicos diferentes: lasers de spin, politipismo em semicondutores III-V e efeitos do acoplamento spin-órbita em materiais com estrutura cristalina wurtzita. Para os lasers de spin, investigamos o comportamento de sua região ativa, em uma geometria VCSEL, baseada em poços quânticos de zinc-blende GaAs/AlGaAs através do cálculo do coeficiente de ganho dependente de spin. Assumindo elétrons com polarização de spin, nossos cálculos mostraram as características de filtro de spin e de redução do limiar de laser encontradas em experimentos e pela abordagem convencional de equações de taxa no regime estacionário. Motivados pelas evidências experimentais de operação dinâmica mais veloz para a polarização da luz devido às anisotropias do sistema, calculamos o coeficiente de birrefringência para a região ativa sob efeito de uma tensão uniaxial. Nossos cálculos mostraram que, mesmo para um pequeno valor de tensão aplicada, o coeficiente de birrefringência pode facilmente exceder 200 GHz. Na realidade, nossas predições foram demonstradas experimentalmente para valores de até 250 GHz em um dispositivo VCSEL de spin de GaAs/AlGaAs similar ao nosso sistema estudado. Para o politipismo, desenvolvemos um modelo k.p combinado com a aproximação da função envelope para investigar o politipismo em sistemas semicondutores III-V com mistura de estruturas cristalinas zinc-blende e wurtzita. Aplicamos o modelo para poços quânticos politípicos de InP para investigar efeitos de confinamento quântico e de tensão. Também estendemos esse modelo politípico para incluir explicitamente o acoplamento entre as bandas de condução e valência com o intuito de investigar propriedades óticas em superredes politípicas de InP. Para nanofios com fase cristalina pura, modelados por cálculos na forma bulk com inclusão do confinamento ótico, observamos as mesmas características experimentais para a polarização da luz, isto é, a fase zinc-blende favorece a polarização da luz ao longo do eixo do nanofio enquanto a fase wurtzita favorece a polarização perpendicular ao eixo. Incluindo a mistura cristalina e os efeitos de confinamento quântico, obtemos o grau de polarização linear variando entre os valores de nanofios puros de zinc-blende e wurtzita e, mais especificamente, que esse grau de polarização é muito sensível ao tamanho das regiões de zinc-blende, uma característica também observada em medidas de fotoluminescência. Finalmente, desenvolvemos um Hamiltoniano k.p realista, com parâmetros obtidos de estruturas de bandas por primeiros princípios, para investigar propriedades eletrônicas e efeitos do acoplamento spin-órbita em materiais semicondutores de InAs e InP com estrutura cristalina wurtzita. Nosso modelo k.p 8×8 descreve as bandas de condução e valência, incluindo spin, em torno da energia de gap. N´os também incluímos o termo de acoplamento spin-órbita dependente de k, geralmente desprezado na literatura, para descrever corretamente a assimetria de inversão de bulk da estrutura wurtzita. Mostramos que todas as bandas de energia investigadas possuem um valor esperado de spin que segue a textura de spin do tipo Rashba, com orientação no sentido horário ou anti-horário. Nós enfatizamos que todas as características da estrutura de bandas, abertura de spin e orientação de spin dos cálculos de primeiros princípios foram sistematicamente checadas para fornecer o melhor conjunto de parâmetros. Usando o Hamiltoniano k.p 8×8, calculamos a densidade de estados e obtemos a densidade de portadores como função da energia de Fermi. Fornecemos também uma abordagem analítica para a banda de condução e uma descrição compacta para a banda de valência, no entanto, o Hamiltoniano 8×8 é a melhor abordagem para modelar os cálculos de primeiros princípios em uma ampla região da primeiro zona de Brillouin.
3

Development and application of the k.p method to investigate spin and optical properties of semiconductor nanostructures / Desenvolvimento e aplicação do método k.p para investigar propriedades óticas e de spin em nanostruturas semicondutoras

Paulo Eduardo de Faria Júnior 30 June 2016 (has links)
Many observable properties of semiconductor systems, such as transport and optical transitions, are manifestations of their underlying electronic band structures, i. e., the energy levels that electrons may have in the semiconductor. Among the theoretical approaches to calculate the band structure, the k.p method is a versatile framework that can be extended to deal with confined systems, overcoming the computational limitations of first principles methods. In this thesis, we develop and apply k.p Hamiltonians to investigate spin and optical physical phenomena in unconventional semiconductor systems. Specifically, we addressed three different topics: spin lasers, polytypism in III-V semiconductors and spin-orbit coupling effects in wurtzite materials. For spin lasers, we investigate the behavior of their active region, in a VCSEL geometry, based on GaAs/AlGaAs zinc-blende quantum wells by calculating the spin-dependent gain coefficient. Assuming spin polarized electrons, our calculations showed the spin-filtering and the threshold reduction features found in experiments and by the conventional rate equation approach in the steady-state operation. Motivated by experimental evidence of enhanced dynamic operation for light polarization because of anisotropies in the semiconductor system, we calculate the birefringence coefficient of the active region under uniaxial strain. Our calculations showed that, even for a small value of applied strain, the birefringence coefficient can easily exceed 200 GHz. In fact, our predictions were experimentally demonstrated for values up to 250 GHz in similar GaAs/AlGaAs spin VCSELs. For the polytypism topic, we develop a k.p model combined with the envelope function approximation to investigate the polytypismin III-V semiconductor systems with mixed zinc-blende and wurtzite crystal structures. We apply our model for InP polytypic quantum wells to investigate quantum confinement and strain effects. We then extended this polytypic model to include the explicit coupling between the conduction and the valence bands in order to investigate optical properties in InP polytypic superlattices. For pure phase nanowires, modeled with bulk calculations and the optical confinement, we can see the same experimental trends regarding the light polarization, i. e., zinc-blende phase favors light polarization along the nanowire axis while wurtzite phase favors the polarization perpendicular to the axis. Including the crystal phase mixing and the quantum confinement effects, we obtain the degree of light polarization ranging from pure zinc-blende to pure wurtzite nanowires and, more specifically, that this degree of polarization is very sensitive to the size of zinc-blende regions, a feature that is also observed in photoluminescence measurements. Finally, we develop a realistic k.p Hamiltonian, with parameters obtained from ab initio band structures, to investigate electronic properties and spin-orbit coupling effects in InAs and InP semiconductors with wurtzite structure. Our 8×8 k.p model describes the conduction and the valence bands, including spin, around the energy gap. We also include the k-dependent spin-orbit coupling term, usually neglected in the literature, to correctly describe the bulk inversion asymmetry of wurtzite structure. We show that all the investigated energy bands have a spin expectation value that follows a Rashba-like spin texture, with either clockwise or counter clockwise orientation. We emphasize that all the ab initio features of band structure, spin splittings and spin orientation were systematically checked to provide the best parameter sets. Using the 8×8 k.p Hamiltonian, we calculated the density of states and predicted the carrier density as a function of the Fermi energy. We also provide an analytical approach for conduction band and a compact description for the valence bands, however, the 8×8 Hamiltonian is the best approach to recover the ab initio calculations around a large region of the first Brillouin zone. / Diversas propriedades observáveis de sistemas semicondutores, como transporte e transições óticas, são manifestações de suas estruturas de bandas eletrônica, isto é, os níveis energéticos que elétrons podem ocupar no semicondutor. Entre as abordagens teóricas para o cálculo de estrutura de bandas, o método k.p é uma ferramenta versátil que pode ser estendida para tratar sistemas confinados, superando as limitações computacionais de métodos de primeiros princípios. Nesta tese, nós desenvolvemos e aplicamos Hamiltonianos k.p para fenômenos físicos óticos e de spin em sistemas semicondutores não convencionais. Especificamente, nós consideramos três tópicos diferentes: lasers de spin, politipismo em semicondutores III-V e efeitos do acoplamento spin-órbita em materiais com estrutura cristalina wurtzita. Para os lasers de spin, investigamos o comportamento de sua região ativa, em uma geometria VCSEL, baseada em poços quânticos de zinc-blende GaAs/AlGaAs através do cálculo do coeficiente de ganho dependente de spin. Assumindo elétrons com polarização de spin, nossos cálculos mostraram as características de filtro de spin e de redução do limiar de laser encontradas em experimentos e pela abordagem convencional de equações de taxa no regime estacionário. Motivados pelas evidências experimentais de operação dinâmica mais veloz para a polarização da luz devido às anisotropias do sistema, calculamos o coeficiente de birrefringência para a região ativa sob efeito de uma tensão uniaxial. Nossos cálculos mostraram que, mesmo para um pequeno valor de tensão aplicada, o coeficiente de birrefringência pode facilmente exceder 200 GHz. Na realidade, nossas predições foram demonstradas experimentalmente para valores de até 250 GHz em um dispositivo VCSEL de spin de GaAs/AlGaAs similar ao nosso sistema estudado. Para o politipismo, desenvolvemos um modelo k.p combinado com a aproximação da função envelope para investigar o politipismo em sistemas semicondutores III-V com mistura de estruturas cristalinas zinc-blende e wurtzita. Aplicamos o modelo para poços quânticos politípicos de InP para investigar efeitos de confinamento quântico e de tensão. Também estendemos esse modelo politípico para incluir explicitamente o acoplamento entre as bandas de condução e valência com o intuito de investigar propriedades óticas em superredes politípicas de InP. Para nanofios com fase cristalina pura, modelados por cálculos na forma bulk com inclusão do confinamento ótico, observamos as mesmas características experimentais para a polarização da luz, isto é, a fase zinc-blende favorece a polarização da luz ao longo do eixo do nanofio enquanto a fase wurtzita favorece a polarização perpendicular ao eixo. Incluindo a mistura cristalina e os efeitos de confinamento quântico, obtemos o grau de polarização linear variando entre os valores de nanofios puros de zinc-blende e wurtzita e, mais especificamente, que esse grau de polarização é muito sensível ao tamanho das regiões de zinc-blende, uma característica também observada em medidas de fotoluminescência. Finalmente, desenvolvemos um Hamiltoniano k.p realista, com parâmetros obtidos de estruturas de bandas por primeiros princípios, para investigar propriedades eletrônicas e efeitos do acoplamento spin-órbita em materiais semicondutores de InAs e InP com estrutura cristalina wurtzita. Nosso modelo k.p 8×8 descreve as bandas de condução e valência, incluindo spin, em torno da energia de gap. N´os também incluímos o termo de acoplamento spin-órbita dependente de k, geralmente desprezado na literatura, para descrever corretamente a assimetria de inversão de bulk da estrutura wurtzita. Mostramos que todas as bandas de energia investigadas possuem um valor esperado de spin que segue a textura de spin do tipo Rashba, com orientação no sentido horário ou anti-horário. Nós enfatizamos que todas as características da estrutura de bandas, abertura de spin e orientação de spin dos cálculos de primeiros princípios foram sistematicamente checadas para fornecer o melhor conjunto de parâmetros. Usando o Hamiltoniano k.p 8×8, calculamos a densidade de estados e obtemos a densidade de portadores como função da energia de Fermi. Fornecemos também uma abordagem analítica para a banda de condução e uma descrição compacta para a banda de valência, no entanto, o Hamiltoniano 8×8 é a melhor abordagem para modelar os cálculos de primeiros princípios em uma ampla região da primeiro zona de Brillouin.

Page generated in 0.0311 seconds