• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelo de Kane 8 × 8 para a estrutura eletrônica de wurtzitas / Kane model for the electronic structure of wurtzites

Pires, Diego Paiva 14 February 2013 (has links)
A interação spin-órbita tem desempenhado um papel crucial no desenvolvimento de dispositivos semicondutores de baixa dimensionalidade. Em resultados recentes abordando o modelo de Kane para sistemas cúbicos, particularmente redes zincblende, hamiltonianos efetivos são calculados por meio da técnica algébrica conhecida como folding down seguida de um processo de linearização até segunda ordem no inverso do gap de energia com a devida correção na normalização do espinor da banda de condução [PRL 99, 076603 (2007); PRB 78, 155313 (2008)]. Motivados por estes estudos, este trabalho se concentra no estudo algébrico da estrutura eletrônica de semicondutores de rede wurtzita. Usando as simetrias da rede hexagonal, o modelo de Kane 8 × 8 é formulado levando em conta todos os acoplamentos mediados pelos operadores momentum linear e angular de spin. Mostramos que a base de oito estados vinda da diagonalização exata da matriz associada à interação spin-órbita fornece um tratamento unificado entre os sistemas hexagonal e cúbico, o que pode ser muito útil no estudo de politipismos. Através de um modelo efetivo baseado na expansão em ordens do inverso do gap de energia, determinamos a equação que descreve o comportamento de um elétron de condução em poços quânticos e em estruturas semicondutoras na fase bulk. Em particular, destacamos a presença de massas efetivas e a emergência de uma interação dependente em spin na forma do operador helicidade no plano já em primeira ordem de aproximação, algo não observado em sistemas cúbicos. A heteroestrutura é investigada no âmbito do modelo de uma e duas subbandas dos poços quânticos das junções semicondutoras. Incluindo o campo de radiação, encontramos a equação efetiva que descreve a interação elétron-fóton analisando ainda as taxas de transição óptica do sistema. Observa-se que as transições ópticas são diretamente mediadas por spin e dependem da direção de incidência do fóton seja no poço quântico ou na monoestrutura semicondutora. Uma vez que estas transições ópticas induzem a mudança na orientação do spin eletrônico, estes resultados podem ser úteis na construção de novos dispositivos optoeletrônicos tendo a wurtzita como cenário. Considerando o hamiltoniano em primeira ordem no inverso do gap de energia relativo ao modelo de uma subbanda, verificamos que a evolução temporal do operador posição do elétron de condução varia linearmente no tempo e não exibe o efeito Zitterbewegung. Associado a evolução temporal dos operadores de spin que oscilam no tempo, o movimento linear garante a formação de um campo harmônico onde os spins precessam. Como apontado no caso cúbico, a precessão do spin de elétrons injetados no poço quântico sob polarização de 45° pode levar à formação spin gratings devido ao espaçamento da ordem de alguns nanômetros destas entidades. Calculamos ainda o shift no vetor de onda de elétrons injetados no canal semicondutor do transitor Datta-Das formado por redes wurtzita. / The spin-orbit interaction has played a crucial role in the development of low-dimensional semiconductor devices. In recent results addressing the 8 × 8 Kane model for cubic systems, particularly zincblende lattices, effective hamiltonians for the conduction band are calculated in a semi-analytical way. By folding down the Kane hamiltonian, the spinor components in the conduction band are isolated, resulting in an equation having the energy in denominators. Through a linearization process, controlled by a power expansion in the inverse of the energy gap, the energy is removed from the denominators and an effective hamiltonian is obtained. In a zincblende system, terms dependent on spin only appear in the effective hamiltonian of second order in the inverse of the energy gap of a heterostructure [PRL 99, 076603 (2007); PRB 78, 155313 (2008)]. In this masters thesis we apply this semi-analytical procedure to generate effective hamiltonians for the conduction band of wurtzite systems. Using the symmetries of the hexagonal lattice, the 8 × 8 Kane model is reviewed by taking into account all couplings mediated by the linear momentum and spin angular momentum. We show that exists an unified treatment for the Kane model of zincblende and wurtzite systems, which can be very useful in studies with nanowhiskers. We have found a first-order effective Hamiltonian having terms dependent on spin even in the bulk case. One of these spin-dependent terms is the helicity operator. The spin-orbit interaction only appears in the second order expansion. Considering the first order hamiltonian, we have calculated the Zitterbewegung effect and discussed the Datta-Das transistor. We have found that only the spin operators exhibit the Zitterbewegung effect. The linear dependence with time shown by the position operators make of the spin operators harmonic fields, which form spin grattings similar to those found in zincblende heterostructures (persistent spin helix). We have also included a radiation field and calculated the (direct) optical transitions assisted by spin. We have found that the transition rates are harmonic functions of the incidence angle.
2

Modelo de Kane 8 × 8 para a estrutura eletrônica de wurtzitas / Kane model for the electronic structure of wurtzites

Diego Paiva Pires 14 February 2013 (has links)
A interação spin-órbita tem desempenhado um papel crucial no desenvolvimento de dispositivos semicondutores de baixa dimensionalidade. Em resultados recentes abordando o modelo de Kane para sistemas cúbicos, particularmente redes zincblende, hamiltonianos efetivos são calculados por meio da técnica algébrica conhecida como folding down seguida de um processo de linearização até segunda ordem no inverso do gap de energia com a devida correção na normalização do espinor da banda de condução [PRL 99, 076603 (2007); PRB 78, 155313 (2008)]. Motivados por estes estudos, este trabalho se concentra no estudo algébrico da estrutura eletrônica de semicondutores de rede wurtzita. Usando as simetrias da rede hexagonal, o modelo de Kane 8 × 8 é formulado levando em conta todos os acoplamentos mediados pelos operadores momentum linear e angular de spin. Mostramos que a base de oito estados vinda da diagonalização exata da matriz associada à interação spin-órbita fornece um tratamento unificado entre os sistemas hexagonal e cúbico, o que pode ser muito útil no estudo de politipismos. Através de um modelo efetivo baseado na expansão em ordens do inverso do gap de energia, determinamos a equação que descreve o comportamento de um elétron de condução em poços quânticos e em estruturas semicondutoras na fase bulk. Em particular, destacamos a presença de massas efetivas e a emergência de uma interação dependente em spin na forma do operador helicidade no plano já em primeira ordem de aproximação, algo não observado em sistemas cúbicos. A heteroestrutura é investigada no âmbito do modelo de uma e duas subbandas dos poços quânticos das junções semicondutoras. Incluindo o campo de radiação, encontramos a equação efetiva que descreve a interação elétron-fóton analisando ainda as taxas de transição óptica do sistema. Observa-se que as transições ópticas são diretamente mediadas por spin e dependem da direção de incidência do fóton seja no poço quântico ou na monoestrutura semicondutora. Uma vez que estas transições ópticas induzem a mudança na orientação do spin eletrônico, estes resultados podem ser úteis na construção de novos dispositivos optoeletrônicos tendo a wurtzita como cenário. Considerando o hamiltoniano em primeira ordem no inverso do gap de energia relativo ao modelo de uma subbanda, verificamos que a evolução temporal do operador posição do elétron de condução varia linearmente no tempo e não exibe o efeito Zitterbewegung. Associado a evolução temporal dos operadores de spin que oscilam no tempo, o movimento linear garante a formação de um campo harmônico onde os spins precessam. Como apontado no caso cúbico, a precessão do spin de elétrons injetados no poço quântico sob polarização de 45° pode levar à formação spin gratings devido ao espaçamento da ordem de alguns nanômetros destas entidades. Calculamos ainda o shift no vetor de onda de elétrons injetados no canal semicondutor do transitor Datta-Das formado por redes wurtzita. / The spin-orbit interaction has played a crucial role in the development of low-dimensional semiconductor devices. In recent results addressing the 8 × 8 Kane model for cubic systems, particularly zincblende lattices, effective hamiltonians for the conduction band are calculated in a semi-analytical way. By folding down the Kane hamiltonian, the spinor components in the conduction band are isolated, resulting in an equation having the energy in denominators. Through a linearization process, controlled by a power expansion in the inverse of the energy gap, the energy is removed from the denominators and an effective hamiltonian is obtained. In a zincblende system, terms dependent on spin only appear in the effective hamiltonian of second order in the inverse of the energy gap of a heterostructure [PRL 99, 076603 (2007); PRB 78, 155313 (2008)]. In this masters thesis we apply this semi-analytical procedure to generate effective hamiltonians for the conduction band of wurtzite systems. Using the symmetries of the hexagonal lattice, the 8 × 8 Kane model is reviewed by taking into account all couplings mediated by the linear momentum and spin angular momentum. We show that exists an unified treatment for the Kane model of zincblende and wurtzite systems, which can be very useful in studies with nanowhiskers. We have found a first-order effective Hamiltonian having terms dependent on spin even in the bulk case. One of these spin-dependent terms is the helicity operator. The spin-orbit interaction only appears in the second order expansion. Considering the first order hamiltonian, we have calculated the Zitterbewegung effect and discussed the Datta-Das transistor. We have found that only the spin operators exhibit the Zitterbewegung effect. The linear dependence with time shown by the position operators make of the spin operators harmonic fields, which form spin grattings similar to those found in zincblende heterostructures (persistent spin helix). We have also included a radiation field and calculated the (direct) optical transitions assisted by spin. We have found that the transition rates are harmonic functions of the incidence angle.
3

Development and application of the k.p method to investigate spin and optical properties of semiconductor nanostructures / Desenvolvimento e aplicação do método k.p para investigar propriedades óticas e de spin em nanostruturas semicondutoras

Faria Júnior, Paulo Eduardo de 30 June 2016 (has links)
Many observable properties of semiconductor systems, such as transport and optical transitions, are manifestations of their underlying electronic band structures, i. e., the energy levels that electrons may have in the semiconductor. Among the theoretical approaches to calculate the band structure, the k.p method is a versatile framework that can be extended to deal with confined systems, overcoming the computational limitations of first principles methods. In this thesis, we develop and apply k.p Hamiltonians to investigate spin and optical physical phenomena in unconventional semiconductor systems. Specifically, we addressed three different topics: spin lasers, polytypism in III-V semiconductors and spin-orbit coupling effects in wurtzite materials. For spin lasers, we investigate the behavior of their active region, in a VCSEL geometry, based on GaAs/AlGaAs zinc-blende quantum wells by calculating the spin-dependent gain coefficient. Assuming spin polarized electrons, our calculations showed the spin-filtering and the threshold reduction features found in experiments and by the conventional rate equation approach in the steady-state operation. Motivated by experimental evidence of enhanced dynamic operation for light polarization because of anisotropies in the semiconductor system, we calculate the birefringence coefficient of the active region under uniaxial strain. Our calculations showed that, even for a small value of applied strain, the birefringence coefficient can easily exceed 200 GHz. In fact, our predictions were experimentally demonstrated for values up to 250 GHz in similar GaAs/AlGaAs spin VCSELs. For the polytypism topic, we develop a k.p model combined with the envelope function approximation to investigate the polytypismin III-V semiconductor systems with mixed zinc-blende and wurtzite crystal structures. We apply our model for InP polytypic quantum wells to investigate quantum confinement and strain effects. We then extended this polytypic model to include the explicit coupling between the conduction and the valence bands in order to investigate optical properties in InP polytypic superlattices. For pure phase nanowires, modeled with bulk calculations and the optical confinement, we can see the same experimental trends regarding the light polarization, i. e., zinc-blende phase favors light polarization along the nanowire axis while wurtzite phase favors the polarization perpendicular to the axis. Including the crystal phase mixing and the quantum confinement effects, we obtain the degree of light polarization ranging from pure zinc-blende to pure wurtzite nanowires and, more specifically, that this degree of polarization is very sensitive to the size of zinc-blende regions, a feature that is also observed in photoluminescence measurements. Finally, we develop a realistic k.p Hamiltonian, with parameters obtained from ab initio band structures, to investigate electronic properties and spin-orbit coupling effects in InAs and InP semiconductors with wurtzite structure. Our 8×8 k.p model describes the conduction and the valence bands, including spin, around the energy gap. We also include the k-dependent spin-orbit coupling term, usually neglected in the literature, to correctly describe the bulk inversion asymmetry of wurtzite structure. We show that all the investigated energy bands have a spin expectation value that follows a Rashba-like spin texture, with either clockwise or counter clockwise orientation. We emphasize that all the ab initio features of band structure, spin splittings and spin orientation were systematically checked to provide the best parameter sets. Using the 8×8 k.p Hamiltonian, we calculated the density of states and predicted the carrier density as a function of the Fermi energy. We also provide an analytical approach for conduction band and a compact description for the valence bands, however, the 8×8 Hamiltonian is the best approach to recover the ab initio calculations around a large region of the first Brillouin zone. / Diversas propriedades observáveis de sistemas semicondutores, como transporte e transições óticas, são manifestações de suas estruturas de bandas eletrônica, isto é, os níveis energéticos que elétrons podem ocupar no semicondutor. Entre as abordagens teóricas para o cálculo de estrutura de bandas, o método k.p é uma ferramenta versátil que pode ser estendida para tratar sistemas confinados, superando as limitações computacionais de métodos de primeiros princípios. Nesta tese, nós desenvolvemos e aplicamos Hamiltonianos k.p para fenômenos físicos óticos e de spin em sistemas semicondutores não convencionais. Especificamente, nós consideramos três tópicos diferentes: lasers de spin, politipismo em semicondutores III-V e efeitos do acoplamento spin-órbita em materiais com estrutura cristalina wurtzita. Para os lasers de spin, investigamos o comportamento de sua região ativa, em uma geometria VCSEL, baseada em poços quânticos de zinc-blende GaAs/AlGaAs através do cálculo do coeficiente de ganho dependente de spin. Assumindo elétrons com polarização de spin, nossos cálculos mostraram as características de filtro de spin e de redução do limiar de laser encontradas em experimentos e pela abordagem convencional de equações de taxa no regime estacionário. Motivados pelas evidências experimentais de operação dinâmica mais veloz para a polarização da luz devido às anisotropias do sistema, calculamos o coeficiente de birrefringência para a região ativa sob efeito de uma tensão uniaxial. Nossos cálculos mostraram que, mesmo para um pequeno valor de tensão aplicada, o coeficiente de birrefringência pode facilmente exceder 200 GHz. Na realidade, nossas predições foram demonstradas experimentalmente para valores de até 250 GHz em um dispositivo VCSEL de spin de GaAs/AlGaAs similar ao nosso sistema estudado. Para o politipismo, desenvolvemos um modelo k.p combinado com a aproximação da função envelope para investigar o politipismo em sistemas semicondutores III-V com mistura de estruturas cristalinas zinc-blende e wurtzita. Aplicamos o modelo para poços quânticos politípicos de InP para investigar efeitos de confinamento quântico e de tensão. Também estendemos esse modelo politípico para incluir explicitamente o acoplamento entre as bandas de condução e valência com o intuito de investigar propriedades óticas em superredes politípicas de InP. Para nanofios com fase cristalina pura, modelados por cálculos na forma bulk com inclusão do confinamento ótico, observamos as mesmas características experimentais para a polarização da luz, isto é, a fase zinc-blende favorece a polarização da luz ao longo do eixo do nanofio enquanto a fase wurtzita favorece a polarização perpendicular ao eixo. Incluindo a mistura cristalina e os efeitos de confinamento quântico, obtemos o grau de polarização linear variando entre os valores de nanofios puros de zinc-blende e wurtzita e, mais especificamente, que esse grau de polarização é muito sensível ao tamanho das regiões de zinc-blende, uma característica também observada em medidas de fotoluminescência. Finalmente, desenvolvemos um Hamiltoniano k.p realista, com parâmetros obtidos de estruturas de bandas por primeiros princípios, para investigar propriedades eletrônicas e efeitos do acoplamento spin-órbita em materiais semicondutores de InAs e InP com estrutura cristalina wurtzita. Nosso modelo k.p 8×8 descreve as bandas de condução e valência, incluindo spin, em torno da energia de gap. N´os também incluímos o termo de acoplamento spin-órbita dependente de k, geralmente desprezado na literatura, para descrever corretamente a assimetria de inversão de bulk da estrutura wurtzita. Mostramos que todas as bandas de energia investigadas possuem um valor esperado de spin que segue a textura de spin do tipo Rashba, com orientação no sentido horário ou anti-horário. Nós enfatizamos que todas as características da estrutura de bandas, abertura de spin e orientação de spin dos cálculos de primeiros princípios foram sistematicamente checadas para fornecer o melhor conjunto de parâmetros. Usando o Hamiltoniano k.p 8×8, calculamos a densidade de estados e obtemos a densidade de portadores como função da energia de Fermi. Fornecemos também uma abordagem analítica para a banda de condução e uma descrição compacta para a banda de valência, no entanto, o Hamiltoniano 8×8 é a melhor abordagem para modelar os cálculos de primeiros princípios em uma ampla região da primeiro zona de Brillouin.
4

Development and application of the k.p method to investigate spin and optical properties of semiconductor nanostructures / Desenvolvimento e aplicação do método k.p para investigar propriedades óticas e de spin em nanostruturas semicondutoras

Paulo Eduardo de Faria Júnior 30 June 2016 (has links)
Many observable properties of semiconductor systems, such as transport and optical transitions, are manifestations of their underlying electronic band structures, i. e., the energy levels that electrons may have in the semiconductor. Among the theoretical approaches to calculate the band structure, the k.p method is a versatile framework that can be extended to deal with confined systems, overcoming the computational limitations of first principles methods. In this thesis, we develop and apply k.p Hamiltonians to investigate spin and optical physical phenomena in unconventional semiconductor systems. Specifically, we addressed three different topics: spin lasers, polytypism in III-V semiconductors and spin-orbit coupling effects in wurtzite materials. For spin lasers, we investigate the behavior of their active region, in a VCSEL geometry, based on GaAs/AlGaAs zinc-blende quantum wells by calculating the spin-dependent gain coefficient. Assuming spin polarized electrons, our calculations showed the spin-filtering and the threshold reduction features found in experiments and by the conventional rate equation approach in the steady-state operation. Motivated by experimental evidence of enhanced dynamic operation for light polarization because of anisotropies in the semiconductor system, we calculate the birefringence coefficient of the active region under uniaxial strain. Our calculations showed that, even for a small value of applied strain, the birefringence coefficient can easily exceed 200 GHz. In fact, our predictions were experimentally demonstrated for values up to 250 GHz in similar GaAs/AlGaAs spin VCSELs. For the polytypism topic, we develop a k.p model combined with the envelope function approximation to investigate the polytypismin III-V semiconductor systems with mixed zinc-blende and wurtzite crystal structures. We apply our model for InP polytypic quantum wells to investigate quantum confinement and strain effects. We then extended this polytypic model to include the explicit coupling between the conduction and the valence bands in order to investigate optical properties in InP polytypic superlattices. For pure phase nanowires, modeled with bulk calculations and the optical confinement, we can see the same experimental trends regarding the light polarization, i. e., zinc-blende phase favors light polarization along the nanowire axis while wurtzite phase favors the polarization perpendicular to the axis. Including the crystal phase mixing and the quantum confinement effects, we obtain the degree of light polarization ranging from pure zinc-blende to pure wurtzite nanowires and, more specifically, that this degree of polarization is very sensitive to the size of zinc-blende regions, a feature that is also observed in photoluminescence measurements. Finally, we develop a realistic k.p Hamiltonian, with parameters obtained from ab initio band structures, to investigate electronic properties and spin-orbit coupling effects in InAs and InP semiconductors with wurtzite structure. Our 8×8 k.p model describes the conduction and the valence bands, including spin, around the energy gap. We also include the k-dependent spin-orbit coupling term, usually neglected in the literature, to correctly describe the bulk inversion asymmetry of wurtzite structure. We show that all the investigated energy bands have a spin expectation value that follows a Rashba-like spin texture, with either clockwise or counter clockwise orientation. We emphasize that all the ab initio features of band structure, spin splittings and spin orientation were systematically checked to provide the best parameter sets. Using the 8×8 k.p Hamiltonian, we calculated the density of states and predicted the carrier density as a function of the Fermi energy. We also provide an analytical approach for conduction band and a compact description for the valence bands, however, the 8×8 Hamiltonian is the best approach to recover the ab initio calculations around a large region of the first Brillouin zone. / Diversas propriedades observáveis de sistemas semicondutores, como transporte e transições óticas, são manifestações de suas estruturas de bandas eletrônica, isto é, os níveis energéticos que elétrons podem ocupar no semicondutor. Entre as abordagens teóricas para o cálculo de estrutura de bandas, o método k.p é uma ferramenta versátil que pode ser estendida para tratar sistemas confinados, superando as limitações computacionais de métodos de primeiros princípios. Nesta tese, nós desenvolvemos e aplicamos Hamiltonianos k.p para fenômenos físicos óticos e de spin em sistemas semicondutores não convencionais. Especificamente, nós consideramos três tópicos diferentes: lasers de spin, politipismo em semicondutores III-V e efeitos do acoplamento spin-órbita em materiais com estrutura cristalina wurtzita. Para os lasers de spin, investigamos o comportamento de sua região ativa, em uma geometria VCSEL, baseada em poços quânticos de zinc-blende GaAs/AlGaAs através do cálculo do coeficiente de ganho dependente de spin. Assumindo elétrons com polarização de spin, nossos cálculos mostraram as características de filtro de spin e de redução do limiar de laser encontradas em experimentos e pela abordagem convencional de equações de taxa no regime estacionário. Motivados pelas evidências experimentais de operação dinâmica mais veloz para a polarização da luz devido às anisotropias do sistema, calculamos o coeficiente de birrefringência para a região ativa sob efeito de uma tensão uniaxial. Nossos cálculos mostraram que, mesmo para um pequeno valor de tensão aplicada, o coeficiente de birrefringência pode facilmente exceder 200 GHz. Na realidade, nossas predições foram demonstradas experimentalmente para valores de até 250 GHz em um dispositivo VCSEL de spin de GaAs/AlGaAs similar ao nosso sistema estudado. Para o politipismo, desenvolvemos um modelo k.p combinado com a aproximação da função envelope para investigar o politipismo em sistemas semicondutores III-V com mistura de estruturas cristalinas zinc-blende e wurtzita. Aplicamos o modelo para poços quânticos politípicos de InP para investigar efeitos de confinamento quântico e de tensão. Também estendemos esse modelo politípico para incluir explicitamente o acoplamento entre as bandas de condução e valência com o intuito de investigar propriedades óticas em superredes politípicas de InP. Para nanofios com fase cristalina pura, modelados por cálculos na forma bulk com inclusão do confinamento ótico, observamos as mesmas características experimentais para a polarização da luz, isto é, a fase zinc-blende favorece a polarização da luz ao longo do eixo do nanofio enquanto a fase wurtzita favorece a polarização perpendicular ao eixo. Incluindo a mistura cristalina e os efeitos de confinamento quântico, obtemos o grau de polarização linear variando entre os valores de nanofios puros de zinc-blende e wurtzita e, mais especificamente, que esse grau de polarização é muito sensível ao tamanho das regiões de zinc-blende, uma característica também observada em medidas de fotoluminescência. Finalmente, desenvolvemos um Hamiltoniano k.p realista, com parâmetros obtidos de estruturas de bandas por primeiros princípios, para investigar propriedades eletrônicas e efeitos do acoplamento spin-órbita em materiais semicondutores de InAs e InP com estrutura cristalina wurtzita. Nosso modelo k.p 8×8 descreve as bandas de condução e valência, incluindo spin, em torno da energia de gap. N´os também incluímos o termo de acoplamento spin-órbita dependente de k, geralmente desprezado na literatura, para descrever corretamente a assimetria de inversão de bulk da estrutura wurtzita. Mostramos que todas as bandas de energia investigadas possuem um valor esperado de spin que segue a textura de spin do tipo Rashba, com orientação no sentido horário ou anti-horário. Nós enfatizamos que todas as características da estrutura de bandas, abertura de spin e orientação de spin dos cálculos de primeiros princípios foram sistematicamente checadas para fornecer o melhor conjunto de parâmetros. Usando o Hamiltoniano k.p 8×8, calculamos a densidade de estados e obtemos a densidade de portadores como função da energia de Fermi. Fornecemos também uma abordagem analítica para a banda de condução e uma descrição compacta para a banda de valência, no entanto, o Hamiltoniano 8×8 é a melhor abordagem para modelar os cálculos de primeiros princípios em uma ampla região da primeiro zona de Brillouin.
5

INVESTIGAÇÃO TEÓRICA DOS MATERIAIS ZnO:Ba E (Ba, Zn)TiO3

Lacerda, Luis Henrique da Silveira 09 March 2015 (has links)
Made available in DSpace on 2017-07-24T19:37:53Z (GMT). No. of bitstreams: 1 Luis Lacerda.pdf: 6157407 bytes, checksum: 67f47ee9ce5d908521ba3d0455add580 (MD5) Previous issue date: 2015-03-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Semiconductors materials are largely employed on development of innumerous optical and electronic due to their electronic, optical, ferroelectric and structural properties. Among the semiconductors materials stand out the zinc oxide (ZnO) and the barium titanate (BaTiO3) once shows excellent properties allied to low cost to obtaining. The ZnO is a simple oxide used in technology and largely investigated as an alternative to replace high cost material on development of electronic devices. Similarly, the BaTiO3 has perovskite crystalline structure whose properties present great technological interest. This work evaluated the effect of Ba presence on wurtzite structure and the influence of Zn atoms on tetragonal BaTiO3 properties. The obtained results indicates that the Ba atoms changes drastically the band structure of ZnO, resulting in the decrease of band gap for low quantities and the semiconductor type modification for doping above 25 %. The insertion of such atoms in wurtzite also causes the improvement of ferroelectric properties and the increase of unit cell lattice parameters. In case of Zn-doped BaTiO3, the doping process reduces radically de band gap and the ferroelectric properties regarding to pure material. Likewise, the semiconductor type is also modified by the Zn atoms presence. Based on obtained results for both crystalline systems, was proposed their employed in formation of p-n heterojunction. The heterostructure was evaluated through of four models. The obtained results for each one of these models were used to describe the interface region of ZnO/BaTiO3 heterojunction, proving that the atoms intercalation occurs and is responsible for heterostructure properties. Such properties present this heterostructure as a potential alternative for development of electronic devices, mainly the development of memory devices. The obtained heterostructure requires a low amount energy to electronic conduction process and shows high compatibility between the structure of heterojunction and the SiO2 substrate which is used in development of such devices. / Materiais semicondutores são amplamente empregados no desenvolvimento de vários dispositivos ópticos e eletrônicos variados devido às suas propriedades eletrônicas, ópticas, ferroelétricas e estruturais. Dentre os materiais semicondutores, destacam-se o óxido de zinco (ZnO) e o Titanato de Bário (BaTiO3) uma vez que apresentam excelentes propriedades aliadas ao baixo custo de síntese. O ZnO é um óxido simples amplamente empregado na tecnologia e largamente investigado como uma alternativa para substituição de materiais de custo elevado no desenvolvimento de dispositivos eletrônicos. Por sua vez, o BaTiO3 é um material de estrutura cristalina perovskita cujas propriedades são de grande interesse tecnológico. No presente trabalho avaliou-se o efeito da presença de átomos de Ba na estrutura wurtzita do ZnO e a influência dos átomos de Zn sobre as propriedades do BaTiO3 tetragonal. Os resultados indicaram que os átomos de bário alteram drasticamente a estrutura de bandas do ZnO, resultando na diminuição do band gap para pequenas quantidades e a modificação do tipo de semicondutor para dopagens superiores a 25%. A inserção de tais átomos na estrutura wurtzita também é responsável pelo aprimoramento das propriedades ferroelétricas do material, bem como pelo aumento dos parâmetros de rede da célula unitária. No caso da estrutura do BaTiO3 dopada com Zn observou-se a redução drástica do band gap para o material e a modificação do caráter semicondutor do material; entretanto, ocorreu a redução das propriedades ferroelétricas em relação ao BaTiO3 puro. Com base nos resultados obtidos para ambos os sistemas cristalinos, propôs-se a sua utilização para formação de uma heterojunção do tipo p-n. A heteroestrutura foi avaliada por meio de quatro modelos diferentes. Os resultados obtidos para cada um destes modelos foram utilizados para descrição da estrutura eletrônica da região de interface da heterojunção, comprovando que a intercalação de átomos na interface é observada e mostra-se responsável pelas propriedades observadas para a heteroestrutura. Tais propriedades apontam a heterojunção ZnO/BaTiO3 como uma alternativa em potencial para aplicação no desenvolvimento de dispositivos eletrônicos e, principalmente, no desenvolvimento de dispositivos de armazenamento de dados, devido a diminuição de energia necessária para condução eletrônica.

Page generated in 0.0365 seconds