1 |
Quantização de Laços do Modelo BF Acoplado a Matéria Topológica em 1+1 Dimensões.COUTO, R. G. 10 December 2012 (has links)
Made available in DSpace on 2018-08-01T22:29:36Z (GMT). No. of bitstreams: 1
tese_6207_.pdf: 527167 bytes, checksum: 325dbb968e354925f0dd14ea3782551e (MD5)
Previous issue date: 2012-12-10 / O objetivo deste trabalho é realizar a quantização de Laços do modelo BF acoplado com matéria topológica em 1+1 dimensões. Para tal, introduzimos os conceitos principais e aplicamos a metodologia no modelo BF puro, começando pelo formalismo hamiltoniano do modelo, quantização canônica para sistemas vinculados proposta por Dirac e quantização de Laços. Depois aplicamos a mesma metodologia para o modelo acoplado, também explorando uma propriedade de supersimetria rígida contida nele, que nos serve de guia para uma escolha de coordenadas apropriada à quantização.
|
2 |
Uma fundamentação teórica para a complexidade estrutural de problemas de otimizaçãoLeal, Liara Aparecida dos Santos January 2002 (has links)
Com o objetivo de desenvolver uma fundamentação teórica para o estudo formal de problemas de otimização NP-difíceis, focalizando sobre as propriedades estruturais desses problemas relacionadas à questão da aproximabilidade, este trabalho apresenta uma abordagem semântica para tratar algumas questões originalmente estudadas dentro da Teoria da Complexidade Computacional, especificamente no contexto da Complexidade Estrutural. Procede-se a uma investigação de interesse essencialmente teórico, buscando obter uma formalização para a teoria dos algoritmos aproximativos em dois sentidos. Por um lado, considera-se um algoritmo aproximativo para um problema de otimização genérico como o principal objeto de estudo, estruturando-se matematicamente o conjunto de algoritmos aproximativos para tal problema como uma ordem parcial, no enfoque da Teoria dos Domínios de Scott. Por outro lado, focaliza-se sobre as reduções entre problemas de otimização, consideradas como morfismos numa abordagem dentro da Teoria das Categorias, onde problemas de otimização e problemas aproximáveis são os objetos das novas categorias introduzidas. Dentro de cada abordagem, procura-se identificar aqueles elementos universais, tais como elementos finitos, objetos totais, problemas completos para uma classe, apresentando ainda um sistema que modela a hierarquia de aproximação para um problema de otimização NP-difícil, com base na teoria categorial da forma. Cada uma destas estruturas matemáticas fornecem fundamentação teórica em aspectos que se complementam. A primeira providencia uma estruturação interna para os objetos, caracterizando as classes de problemas em relação às propriedades de aproximabilidade de seus membros, no sentido da Teoria dos Domínios, enquanto que a segunda caracteriza-se por relacionar os objetos entre si, em termos de reduções preservando aproximação entre problemas, num ponto de vista externo, essencialmente categorial.
|
3 |
Categoria de grafos parciais com homomorfismos totais teoria e aplicaçõesRoggia, Karina Girardi January 2005 (has links)
O conceito de parcialidade e importante em diversas áreas como a Matemática e a Ciência da Computação; ele pode ser utilizado, por exemplo, para expressar computações que não terminam e para definir funções recursivas parciais. Com rela cão a grafos, categorias de homomorfismos parciais são comuns (por exemplo, em gramáticas de grafos com a técnica de single-pushout). Este trabalho propõe uma abordagem diferente: a parcialidade é usada na estrutura interna dos objetos (não nos morfismos).Istoéfeito utilizando uma extensão do conceito de Categoria das Setas, chamada de Categoria das Setas Parciais. E definida entãoa categoria Grp de grafos parciais(tais que arcos podem possuir ou não vértices de origem e/ou destino) e homomorfismos totais.A generalização deste modelo resulta em categorias de grafos parciais internos.Émostrado que Grp é bicompleta e, se C é um topos, a categoria dos grafos parciais internos a C é cocompleta. Grafos parciais podem ser utilizados para definir modelos computacionais tais como autômatos. Uma categoria de Autômatos Parciais, denominada Autp, é construída a partir da categoria de Grafos Parciais. Usando uma extensão de composição de spans de grafos para autômatos, chamada de Composição de Transições, e possível definir as computações de autômatos. Brevemente, uma composição de transi cões de dois autômatos parciais resulta em um autômato parcial onde cada transição representa um caminho de tamanho dois (entre vértices), tal que a primeira metade é uma transição do primeiro autômato e a segunda metade é uma transição do segundo. É possível compor um autômato consigo mesmo diversas vezes; no caso de n sucessivas composições de transições, pode-se obter as palavras da linguagem aceita pelo autômato que necessitam de n+1 passos de computação nos arcos que não possuem origem e nem destino definidos do autômato parcial resultante.
|
4 |
Uma fundamentação teórica para a complexidade estrutural de problemas de otimizaçãoLeal, Liara Aparecida dos Santos January 2002 (has links)
Com o objetivo de desenvolver uma fundamentação teórica para o estudo formal de problemas de otimização NP-difíceis, focalizando sobre as propriedades estruturais desses problemas relacionadas à questão da aproximabilidade, este trabalho apresenta uma abordagem semântica para tratar algumas questões originalmente estudadas dentro da Teoria da Complexidade Computacional, especificamente no contexto da Complexidade Estrutural. Procede-se a uma investigação de interesse essencialmente teórico, buscando obter uma formalização para a teoria dos algoritmos aproximativos em dois sentidos. Por um lado, considera-se um algoritmo aproximativo para um problema de otimização genérico como o principal objeto de estudo, estruturando-se matematicamente o conjunto de algoritmos aproximativos para tal problema como uma ordem parcial, no enfoque da Teoria dos Domínios de Scott. Por outro lado, focaliza-se sobre as reduções entre problemas de otimização, consideradas como morfismos numa abordagem dentro da Teoria das Categorias, onde problemas de otimização e problemas aproximáveis são os objetos das novas categorias introduzidas. Dentro de cada abordagem, procura-se identificar aqueles elementos universais, tais como elementos finitos, objetos totais, problemas completos para uma classe, apresentando ainda um sistema que modela a hierarquia de aproximação para um problema de otimização NP-difícil, com base na teoria categorial da forma. Cada uma destas estruturas matemáticas fornecem fundamentação teórica em aspectos que se complementam. A primeira providencia uma estruturação interna para os objetos, caracterizando as classes de problemas em relação às propriedades de aproximabilidade de seus membros, no sentido da Teoria dos Domínios, enquanto que a segunda caracteriza-se por relacionar os objetos entre si, em termos de reduções preservando aproximação entre problemas, num ponto de vista externo, essencialmente categorial.
|
5 |
Categoria de grafos parciais com homomorfismos totais teoria e aplicaçõesRoggia, Karina Girardi January 2005 (has links)
O conceito de parcialidade e importante em diversas áreas como a Matemática e a Ciência da Computação; ele pode ser utilizado, por exemplo, para expressar computações que não terminam e para definir funções recursivas parciais. Com rela cão a grafos, categorias de homomorfismos parciais são comuns (por exemplo, em gramáticas de grafos com a técnica de single-pushout). Este trabalho propõe uma abordagem diferente: a parcialidade é usada na estrutura interna dos objetos (não nos morfismos).Istoéfeito utilizando uma extensão do conceito de Categoria das Setas, chamada de Categoria das Setas Parciais. E definida entãoa categoria Grp de grafos parciais(tais que arcos podem possuir ou não vértices de origem e/ou destino) e homomorfismos totais.A generalização deste modelo resulta em categorias de grafos parciais internos.Émostrado que Grp é bicompleta e, se C é um topos, a categoria dos grafos parciais internos a C é cocompleta. Grafos parciais podem ser utilizados para definir modelos computacionais tais como autômatos. Uma categoria de Autômatos Parciais, denominada Autp, é construída a partir da categoria de Grafos Parciais. Usando uma extensão de composição de spans de grafos para autômatos, chamada de Composição de Transições, e possível definir as computações de autômatos. Brevemente, uma composição de transi cões de dois autômatos parciais resulta em um autômato parcial onde cada transição representa um caminho de tamanho dois (entre vértices), tal que a primeira metade é uma transição do primeiro autômato e a segunda metade é uma transição do segundo. É possível compor um autômato consigo mesmo diversas vezes; no caso de n sucessivas composições de transições, pode-se obter as palavras da linguagem aceita pelo autômato que necessitam de n+1 passos de computação nos arcos que não possuem origem e nem destino definidos do autômato parcial resultante.
|
6 |
Categoria de grafos parciais com homomorfismos totais teoria e aplicaçõesRoggia, Karina Girardi January 2005 (has links)
O conceito de parcialidade e importante em diversas áreas como a Matemática e a Ciência da Computação; ele pode ser utilizado, por exemplo, para expressar computações que não terminam e para definir funções recursivas parciais. Com rela cão a grafos, categorias de homomorfismos parciais são comuns (por exemplo, em gramáticas de grafos com a técnica de single-pushout). Este trabalho propõe uma abordagem diferente: a parcialidade é usada na estrutura interna dos objetos (não nos morfismos).Istoéfeito utilizando uma extensão do conceito de Categoria das Setas, chamada de Categoria das Setas Parciais. E definida entãoa categoria Grp de grafos parciais(tais que arcos podem possuir ou não vértices de origem e/ou destino) e homomorfismos totais.A generalização deste modelo resulta em categorias de grafos parciais internos.Émostrado que Grp é bicompleta e, se C é um topos, a categoria dos grafos parciais internos a C é cocompleta. Grafos parciais podem ser utilizados para definir modelos computacionais tais como autômatos. Uma categoria de Autômatos Parciais, denominada Autp, é construída a partir da categoria de Grafos Parciais. Usando uma extensão de composição de spans de grafos para autômatos, chamada de Composição de Transições, e possível definir as computações de autômatos. Brevemente, uma composição de transi cões de dois autômatos parciais resulta em um autômato parcial onde cada transição representa um caminho de tamanho dois (entre vértices), tal que a primeira metade é uma transição do primeiro autômato e a segunda metade é uma transição do segundo. É possível compor um autômato consigo mesmo diversas vezes; no caso de n sucessivas composições de transições, pode-se obter as palavras da linguagem aceita pelo autômato que necessitam de n+1 passos de computação nos arcos que não possuem origem e nem destino definidos do autômato parcial resultante.
|
7 |
Uma fundamentação teórica para a complexidade estrutural de problemas de otimizaçãoLeal, Liara Aparecida dos Santos January 2002 (has links)
Com o objetivo de desenvolver uma fundamentação teórica para o estudo formal de problemas de otimização NP-difíceis, focalizando sobre as propriedades estruturais desses problemas relacionadas à questão da aproximabilidade, este trabalho apresenta uma abordagem semântica para tratar algumas questões originalmente estudadas dentro da Teoria da Complexidade Computacional, especificamente no contexto da Complexidade Estrutural. Procede-se a uma investigação de interesse essencialmente teórico, buscando obter uma formalização para a teoria dos algoritmos aproximativos em dois sentidos. Por um lado, considera-se um algoritmo aproximativo para um problema de otimização genérico como o principal objeto de estudo, estruturando-se matematicamente o conjunto de algoritmos aproximativos para tal problema como uma ordem parcial, no enfoque da Teoria dos Domínios de Scott. Por outro lado, focaliza-se sobre as reduções entre problemas de otimização, consideradas como morfismos numa abordagem dentro da Teoria das Categorias, onde problemas de otimização e problemas aproximáveis são os objetos das novas categorias introduzidas. Dentro de cada abordagem, procura-se identificar aqueles elementos universais, tais como elementos finitos, objetos totais, problemas completos para uma classe, apresentando ainda um sistema que modela a hierarquia de aproximação para um problema de otimização NP-difícil, com base na teoria categorial da forma. Cada uma destas estruturas matemáticas fornecem fundamentação teórica em aspectos que se complementam. A primeira providencia uma estruturação interna para os objetos, caracterizando as classes de problemas em relação às propriedades de aproximabilidade de seus membros, no sentido da Teoria dos Domínios, enquanto que a segunda caracteriza-se por relacionar os objetos entre si, em termos de reduções preservando aproximação entre problemas, num ponto de vista externo, essencialmente categorial.
|
8 |
La preface dans le nouveau roman : tradition et rupturesMoreira, Maria Isabel Rego January 1996 (has links)
No description available.
|
9 |
Gramar systems: a-formal-language-theoretic framework for linguistics and cultural evolutionJiménez López, María Dolores 31 March 2000 (has links)
No description available.
|
10 |
A formação dos conceitos e o discurso interior em Eisenstein e Vygotsky : montagem teóricaSoares, Silnei Scharten January 2001 (has links)
Partindo da definição de discurso interior e da análise do processo de formação de conceitos abstratos desenvolvidos pelo psicólogo Lev Vygotsky, faz-se uma aproximação com a teorização do cineasta Sergei Eisenstein sobre as possibilidades de incorporação do discurso interior pelo cinema. Analisam-se as relações entre o conteúdo eminentemente icônico das imagens cinematográficas e os aspectos sensoriais não-verbais presentes no discurso interior, indicados por Vygotsky, com o objetivo de investigar as formas como o discurso cinematográfico articula seus recursos expressivos através da montagem, visando reproduzir em sua organização formal os processos cognitivos que têm lugar no pensamento e que são expressos pelo discurso interior; para isso, o foco de análise centra-se nos métodos de montagem estabelecidos por Eisenstein. Investiga-se também os modos de produção de sentido através da articulação de signos icônicos não-verbais pela montagem cinematográfica, ressaltando o papel que os componentes afetivos da cognição e do intelecto desempenham no processo de produção de conceitos pelo cinema, especialmente o cinema caracterizado nos textos e reflexões teóricas de Eisenstein. Conclui-se que o tipo de discurso interior produzido pelo cinema em geral e o eisensteiniano em particular é aquele que foi definido por Vygotsky como discurso cotidiano ou espontâneo, motivado afetivamente e ligado ao contexto da situação concreta em que emerge.
|
Page generated in 0.0599 seconds