• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular architecture of SF3B and the structural basis of splicing modulation

Cretu, Constantin 26 June 2018 (has links)
No description available.
2

High-efficiency plant genome engineering via CRISPR/Cas9 system

Eid, Ayman 04 1900 (has links)
Precise engineering of genomes holds great promise to advance our understanding of gene function and biotechnological applications. DNA double strand breaks are repaired via imprecise non-homologous end joining repair or via precise homology-directed repair processes. Therefore, we could harness the DSBs to engineer the genomes with a variety of genetic outcomes and with singlebase- level precision. The major barrier for genome engineering was the generation of site-specific DNA DSBs. Programmable DNA enzymes capable of making a complete and site-specific cut in the genome do not exist in nature. However, these enzymes can be made in in vitro as chimeric fusions of two modules, a DNA binding module and a DNA cleaving module. The DNA cleaving module can be programmed to bind to any user-defined sequence and the DNA cleaving module would generate DSBs in the target sequence. These enzymes called molecular scissors include zinc finger nucleases (ZFNs) and transcriptional activator like effector nucleases (TALENs). The programmability of these enzymes depends on protein engineering for DNA binding specificity which may be complicated, recourse intensive and suffer from reproducibility issues. Recently, clustered regularly interspaced palindromic repeats (CRISPR)/ CRISPR associated endonuclease 9 (Cas9) an adaptive immune system of bacterial and archaeal species has been developed for genome engineering applications. CRISPR/Cas9 is an RNA-guided DNA endonuclease and can be reprogrammed through the engineering of single guide RNA molecule (sgRNA). CRISPR/Cas9 activity has been shown across eukaryotic species including plants. Although the engineering of CRISPR/Cas9 is quite predictable and reproducible, there are many technological challenges and improvements that need to be made to achieve robust, specific, and efficient plant genome engineering. Here in this thesis, I developed a number of technologies to improve specificity, delivery and expression and heritability of CRISRP/Cas9-modification in planta. Moreover, I used these technologies to answer basic questions to understand the molecular underpinning of the interplay between splicing and abiotic stress. To improve Cas9 specificity, I designed and constructed a chimeric fusion between catalytically dead Cas9 (dCas9) and FOKI catalytic DNA cleaving domain (dCas9.FoKI). This synthetic chimeric fusion enzyme improved Cas9 specificity which enable precision genome engineering. Delivery of genome engineering reagents into plant cells is quite challenging, I developed a virus-based system to deliver sgRNAs into plants which facilitates plant genome engineering and could bypass the need for tissue culture in engineering plant genomes. To improve the expression of the CRISPR/Cas9 machinery in plant species, I developed a meiotically-driven expression of CRISPR/Cas9 which improved genome editing and heritability of editing in seed progeny, thereby facilitating robust genome engineering applications. To understand the molecular basis of the interplay between splicing stress and abiotic stress, I used the CRISPR/Cas9 machinery to engineer components of the U2snRNP complex coupled which chemical genomics to understand the splicing stress regulation in response to abiotic stress conditions. Finally, I harnessed the technological improvements and developments I have achieved with CRISPR/Cas9 system to develop a directed evolution platform for targeted trait engineering which expands and accelerates trait discovery and engineering of plant species resilient to climate change conditions.
3

Synthèse de nouveaux agents anticancéreux / Synthesis of new anticancer agents

Abou Hamdan, Hussein 24 September 2018 (has links)
Les cancers représentent un problème majeur de santé public d'où la nécessité de rechercher de nouvelles classes de médicaments. Parmi les pistes pour développer de nouveaux traitements, deux ont retenu notre attention et celle de nos collaborateurs : la modulation de l’épissage par des composés comme le NVS-SM2, et l’inhibition de l’oncogène KRAS par des dérivés de produits naturels, les flavaglines. Dans ce contexte, nous avons développé la première synthèse robuste du NVS-SM2, qui peut satisfaire la demande globale de cet agent pour examiner en détail son potentiel thérapeutique dans différents types d’affection. En outre, la stratégie de synthèse rapportée ici pourrait être étendue à de nouveaux analogues de ce composé. D’autre part, nous avons synthétisé de nouvelles flavaglines qui sont en cours d'étude pour leurs effets sur l’inhibition de KRAS. Au cours de cette étude, nous avons découvert de nouvelles réactions, notamment une inversion de configuration d’amines induite par du chlorure de diméthylcarbamoyle. / Cancers represent a major public health problem hence the need to use new classes of medicines. Among the opportunities for developing new treatments, two have caught our attention and that of our collaborators: the modulation of splicing by compounds such as NVS-SM2, and the inhibition of the oncogene KRAS by derivatives of natural products, the flavaglines.In this context, we have developed the first robust synthesis of NVS-SM2, which can satisfy the global demand of this agent to examine in detail its therapeutic potential in different types of disorders. In addition, the synthetic strategy reported here could be extended to new analogues of this compound. Furthermore, we have synthesized new flavaglines that have been examined for their effects on KRAS inhibition. During this study, we discovered new reactions, including a dimethylcarbamoyl chloride-induced amine inversion of configuration.

Page generated in 0.0686 seconds