Spelling suggestions: "subject:"spodumene"" "subject:"xpodumene""
1 |
A theoretical investigation of the nuclear resonance absorption spectrum of spodumeneLamarche, Joseph Louis Gilles January 1953 (has links)
The interaction of nuclei of spin I>½ and non-vanishing quadrupole moment with their surroundings in a crystal consists of two parts: magnetic and electrostatic. In the absence of any external field, the interaction is mainly the quadrupole interaction of the nuclei with the electric field gradient of the crystal, since the crystalline magnetic field is often small and contributes only to the broadening of the quadrupole lines. When an external magnetic field is added, a Zeeman affect is introduced and both interactions are present at the same time.
In this thesis a study is made of the resonance absorption spectrum of a nucleus subjected to both fields when the ratio of the two interaction energies assumes any given arbitrary value.
After a brief survey of the theory of both interactions, and the various perturbation approximations, the problem for a nucleus of spin I= 5/2 is stated explicitly and a brief analysis shows that the solution is particularly simple in the cases where the external magnetic field coincides with one of the principal axes of the electric field gradient. For other directions of the magnetic field, the problem cannot be simplified in any obvious way and leads to much longer numerical calculations. The problem is completely solved numerically in a special case for A1²⁷ in a spodumene crystal for one particular crystal orientation, but over the entire experimentally interesting range of the external magnetic field so as to fit directly the conditions of an experiment proposed in Dr. Volkoff's laboratory in order to aid in the evaluation of its feasibility. The expected variation of the frequencies and the relative intensities of the resonance lines as a function of the applied magnetic field is exhibited in a series of graphs. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
2 |
Occurrence and origin of the peg claims spodumene pegmatites, Knox County, MaineSundelius, Harold Wesley, January 1959 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1959. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 58-61).
|
3 |
The nuclear spin resonance spectrum of Al²⁷ in spodumeneRobinson, Lloyd Burdett January 1957 (has links)
Using the techniques of radio-frequency resonance spectroscopy, experimental studies of the nuclear spin resonance spectrum of Al²⁷ in single crystals of spodumene (LiAl(SiO₃)₂) have been carried out over a wide-range of externally applied magnetic field. In spodumene, interactions of the magnetic dipole moment with an external magnetic field, and also interactions of the electric quadrupole moment with the crystalline electrostatic field gradient can affect the energies of Al²⁷ nuclei. We define R as the ratio of magnetic to electrostatic interaction energies. The object of this thesis has been to measure experimentally a nuclear resonance spectrum over a wide enough range of magnetic field to link the regions where R is much greater than or much less than unity. Much experimental data is available in the literature for crystals where R differs appreciably from unity, but no experimental results have been given before for the intermediate region where R is of the order of unity and where the spectrum is more complex.
Using data obtained from high field measurements in spodumene by Petch and Cranna, Lamarche has calculated energy levels by exact diagonalization of the Hamiltonian over a wide range of R values for a particular orientation of the spodumene crystal in a magnetic field. Calculations for other orientations have been made using electronic computers at the University of Toronto and at the University of British Columbia. Several of the predicted resonances have been observed. One transition has been observed over a range of magnetic field covering the region from R much less than unity to R much greater than unity. Resonance frequencies observed have been in good agreement with calculated transition frequencies.
A new method of using a knowledge of the spin eigenstates to predict signal voltage for an induction spectrometer has been checked at values for R of the order of unity. It gives good agreement with experimental signal voltage measurements. Pure quadrupole transitions have been observed in spodumene at 751.5 kc and 793.5 kc with an estimated probable error of 2 kc, using an induction spectrometer with Zeeman modulation. These measurements are the lowest frequency pure quadrupole resonances reported to date. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
4 |
Formation of ??-eucryptite and ??-spodumene from topaz mixturesLu, Hong, Materials Science & Engineering, Faculty of Science, UNSW January 2006 (has links)
The production of ??-eucryptite [LiAlSiO4] and ??-spodumene [LiAlSi2O6] from topaz [Al2SiO4(F0.64OH0.36)2, containing ~3 wt% quartz impurity] from Torrington, NSW may be of commercial importance since both lithium aluminosilicates have negative or low coefficients of thermal expansion and are used commercially as raw materials in the glass, ceramics, and metallurgical industries. A review of the literature has revealed that the production of ??-eucryptite and ??-spodumene from topaz has not been reported before. The aim of the present work was to determine the kinetics and reaction mechanisms of formation of ??-eucryptite from topaz + lithium carbonate mixtures and ??-spodumene from topaz + lithium carbonate + silica mixtures. To this end, the related reactions and subsolidus phase equilibria of the Li2O-Al2O3-SiO2 ternary system were determined. The subsolidus phase equilibria for the Li2O-Al2O3-SiO2 ternary system were investigated by literature assessment, experimentation, and thermodynamic calculations. The experimentation confirmed the previously published tentative compatibility relations in the Al2O3 and the SiO2 corners. Thermodynamic calculations were used to define the phase relations in the Li2O corner. Thermodynamic calculations also were used to define the phase equilibria for two binary subsystems, Li2SiO3-LiAlO2 and Li4SiO4-LiAlO2. The decomposition of topaz and formation of ??-eucryptite from topaz + lithium carbonate mixtures and ??-spodumene from topaz + lithium carbonate + silica mixtures were investigated experimentally using differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman microspectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). Confirmatory thermodynamic calculations also were done. One significant finding of the present work was the formation of nanofibres from topaz + lithium carbonate mixtures at 1150???C. These fibres were formed by gas-phase reaction of SiF4 and AlOF produced from the reaction between topaz, lithium carbonate and by reaction of SiO2 and Li(OH), which was produced by Li2O volatilisation. These fibres, which were difficult to analyse, most likely consisted of metastable ???-spodumene solid solution or mullite in the incipient stage of formation. Formation of single-phase ???-spodumene from topaz + lithium carbonate + silica mixtures was observed after heating above 950???C for 24 h. Reaction paths for the formation of ??-spodumene over the temperature range 450???-1550???C were proposed. The formation of single-phase ??-spodumene was not simple and straightforward but a complex process involving several precursor phases. Specifically, there were two reaction mechanisms involving the formation of single-phase ???-spodumene by gas-solid reaction and gas-liquid-solid reaction. The reaction kinetics and thermodynamics of the formation of single-phase ??-spodumene at 750???-950???C were assessed. Essential work supplementary to that associated with the Li2O-Al2O3-SiO2 system consisted of determination of the decomposition mechanism of topaz, which was determined to take place in four stages. Reaction paths for the decomposition of topaz also were proposed. Another significant finding of the present work was the formation of transient single-crystal mullite from topaz + lithium carbonate + silica mixtures at ~600???C, which may be contrasted with the normal temperature range of 1000???-1400???C for formation from clay-based raw materials. This phenomenon occurred via a gas-solid growth mechanism. The present observation suggests a potential low-temperature route for the production of high-purity mullite fibres without glass contamination.
|
5 |
Formation of ??-eucryptite and ??-spodumene from topaz mixturesLu, Hong, Materials Science & Engineering, Faculty of Science, UNSW January 2006 (has links)
The production of ??-eucryptite [LiAlSiO4] and ??-spodumene [LiAlSi2O6] from topaz [Al2SiO4(F0.64OH0.36)2, containing ~3 wt% quartz impurity] from Torrington, NSW may be of commercial importance since both lithium aluminosilicates have negative or low coefficients of thermal expansion and are used commercially as raw materials in the glass, ceramics, and metallurgical industries. A review of the literature has revealed that the production of ??-eucryptite and ??-spodumene from topaz has not been reported before. The aim of the present work was to determine the kinetics and reaction mechanisms of formation of ??-eucryptite from topaz + lithium carbonate mixtures and ??-spodumene from topaz + lithium carbonate + silica mixtures. To this end, the related reactions and subsolidus phase equilibria of the Li2O-Al2O3-SiO2 ternary system were determined. The subsolidus phase equilibria for the Li2O-Al2O3-SiO2 ternary system were investigated by literature assessment, experimentation, and thermodynamic calculations. The experimentation confirmed the previously published tentative compatibility relations in the Al2O3 and the SiO2 corners. Thermodynamic calculations were used to define the phase relations in the Li2O corner. Thermodynamic calculations also were used to define the phase equilibria for two binary subsystems, Li2SiO3-LiAlO2 and Li4SiO4-LiAlO2. The decomposition of topaz and formation of ??-eucryptite from topaz + lithium carbonate mixtures and ??-spodumene from topaz + lithium carbonate + silica mixtures were investigated experimentally using differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman microspectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). Confirmatory thermodynamic calculations also were done. One significant finding of the present work was the formation of nanofibres from topaz + lithium carbonate mixtures at 1150???C. These fibres were formed by gas-phase reaction of SiF4 and AlOF produced from the reaction between topaz, lithium carbonate and by reaction of SiO2 and Li(OH), which was produced by Li2O volatilisation. These fibres, which were difficult to analyse, most likely consisted of metastable ???-spodumene solid solution or mullite in the incipient stage of formation. Formation of single-phase ???-spodumene from topaz + lithium carbonate + silica mixtures was observed after heating above 950???C for 24 h. Reaction paths for the formation of ??-spodumene over the temperature range 450???-1550???C were proposed. The formation of single-phase ??-spodumene was not simple and straightforward but a complex process involving several precursor phases. Specifically, there were two reaction mechanisms involving the formation of single-phase ???-spodumene by gas-solid reaction and gas-liquid-solid reaction. The reaction kinetics and thermodynamics of the formation of single-phase ??-spodumene at 750???-950???C were assessed. Essential work supplementary to that associated with the Li2O-Al2O3-SiO2 system consisted of determination of the decomposition mechanism of topaz, which was determined to take place in four stages. Reaction paths for the decomposition of topaz also were proposed. Another significant finding of the present work was the formation of transient single-crystal mullite from topaz + lithium carbonate + silica mixtures at ~600???C, which may be contrasted with the normal temperature range of 1000???-1400???C for formation from clay-based raw materials. This phenomenon occurred via a gas-solid growth mechanism. The present observation suggests a potential low-temperature route for the production of high-purity mullite fibres without glass contamination.
|
6 |
Efeito da radiação UV e gama nas propriedades de absorção óptica, de ressonância paramagnética eletrônica e de termoluminescência na kunzita / Effect of UV and gamma radiation on the properties of optical absorption, electron paramagnetic resonance and thermoluminescence in kunziteSouza, Susana Oliveira de 26 February 2002 (has links)
O espodumênio (LiAl Si IND 2 O IND 6) de cor lilás, chamado kunzita, encontrado no Estado de Minas Gerais, foi investigado no presente trabalho. A análise de fluorescência de raios-X revelou, além das componentes básicas Si 0 IND 2, Al IND 2 O IND 3 e Li IND 2O, várias impurezas, sendo Mn e Fe as principais. Para comparação com o material natural, um policristal \"puro\" de -espodumênio foi produzido pela devitrificação de um vidro obtido da mistura de Si 0 IND 2, Al IND 2 0 IND 3 e Li IND 2 0. Esse método de devitrificação proporciona um processo importante e relativamente simples para produzir um policristal puro que pode ser usado na comparação do material natural. A curva de emissão termoluminescente (TL) da amostra recozida em 600°C por 1h apresentou picos em 145, 215, 350, 370 e 460°C, após uma irradiação com doses entre 10 e 5000Gy. A resposta TL desses picos, acima de 50Gy, é supralinear. A luz TL emitida por amostras naturais recozidas entre 500 e 900°C e, então, irradiadas, mostra que com o tratamento térmico em 900°C a sensibilidade TL aumenta por um fator de 3 comparado com o recozimento entre 500 e 800°C. Esses tratamentos térmicos afetam, também, a estrutura cristalina, mantendo a cristalinidade, mas produzindo um rearranjo nos planos de reflexão e no tamanho dos grãos. O espectro da luz TL da amostra natural apresenta uma banda em torno de 610nm, intensa e larga (-200nm) para todos os picos, embora uma banda muito fraca e larga seja, também, observada em torno de 480nm. Isto significa que, praticamente todos os elétrons que chegam na BC, após o aquecimento para a leitura TL, recombinam-se com um único centro, emitindo luz em torno de 610nm, sendo ele o centro de alumínio [Al O IND 4/h]. As medidas TL do policristal irradiado e não irradiado mostram que, exceto pelos picos TL em 350 e 370°C, todos os outros são devidos à defeitos intrínsecos. Esta conclusão é confirmada pelo espectro de emissão, o qual mostra na amostra artificial a mesma banda em 610nm. A luz UV induz diretamente a termoluminescência. Como a energia dos fótons é bem inferior à largura da banda proibida, a indução de TL foi interpretada como sendo devido à absorção de dois fótons. A resposta TL observada resultantes da irradiação UV de luz syncrotron ou com lâmpadas fluorescentes ou de Hg é diferente da produzida por irradiação gama e diferente entre elas próprias. Ainda não foi encontrada explicação para o fenômeno. No início da irradiação UV, para o pico de 460°C, predomina o acúmulo de transportadores de carga nas armadilhas. Com a longa exposição (>22h) há a diminuição desse pico, prevalecendo o processo de fototransferência acompanhado de fotoesvaziamento. A irradiação intensa cria vacâncias de oxigênio, que recebem em seguida, elétrons da ionização dando origem a centros F. O cristal torna-se predominantemente verde. As bandas de absorção óptica que surgem com irradiação e pertencem a esse centro F, 310, 360, 470 e 630nm, decaem entre 150 e 250°C. Esse comportamento é similar ao do pico TL em 220°C, indicando que esse centro TL está correlacionado ao centro F. Há forte evidência, como no quartzo contendo alumínio como impureza, que o íon de Al POT. 3+ tem a tendência de substituir o íon de Si POT 4+ no tetraedro Si O IND 4, dando origem ao centro [Al O IND 4] Este é neutralizado por um íon alcalino (Li POT. + ou Na POT. +). A irradiação remove M POT.+ e o radical resultante captura um buraco, dando origem ao centro de alumínio [Al O IND 4/h]. Foi aqui proposto, por isso, o seguinte mecanismo de emissão da luz TL em torno de 220°C: i) Durante a irradiação formam-se os centros F e os centros de alumínio. ii) Durante o aquecimento na região de 150°C a 220°C para a leitura TL, tem-se: a. Centro F ---- calor Vacância de O + 2e POT (ou E IND 1+ e POT. ). b. [Al 0 IND 4 /h]+ e POT - [Al O IND 4] POT - + hv IND. TL (pico de 220°C) Foi constatado que a banda de AO em 530nm cresce entre 200 e 300°C, decaindo além de 300°C, para tornar a kunzita incolor em torno de 400°C. Como o Mn POT .3+ é suposto ser o responsável pela cor lilás, ele dá origem à banda em 530nm. Por outro lado, o tratamento térmico isócrono mostra que os picos TL em 350°C e 370°C decaem entre 320 e 375°C, mostrando que há forte correlação entre a banda de absorção em 530nm e os picos TL em 350 e 370°C. Foi, então, proposto que o Mn POT. 4+, presente na amostra, se torna Mn POT. 3+ como aquecimento entre 200 e 300°C, capturando um elétron. Com o aumento da concentração de Mn POT 3+a cor lilás fica mais intensa. Acima de 300°C, tem-se a liberação de um elétron do Mn POT. 3+, que se torna novamente Mn POT 4+. O elétron assim liberado pode recombinar-se com o centro de alumínio e há emissão de luz TL. Comparando-se o comportamento térmico do pico TL em 460°C e um sinal em g= 1,997 pode-se afirmar que os dois centros têm uma relação íntima. Esse centro paramagnético tem semelhança ao centro E IND 1 \', porém, nenhuma indicação definitiva dessa identificação foi encontrada. / Natural spodumene, LiAlSi2O6, of lilac colour, called kunzite, from Minas Gerais State, Brazil, was investigated. An X-ray fluorescence analysis revealed several impurities, Mn and Fe being the principal ones, besides the matrix components SiO2, Al2O3 and Li2O. For comparison a pure policrystal of -spodumene was produced by devitrifying a glass obtained from Si02, Al2O3 and Li2O. The devitrification process has proved to be an important and relatively simple process to produce a \"pure\" polycrystal, which can be used for comparison with a natural sample. The TL glow curves of kunzite annealed at 600°C for 1h presented TL peaks at 145, 215, 350, 370 and 460°C, after gamma-irradiation with doses varying between 10 and 5000Gy. The TL response of these peaks, above 50 Gy, is supralinear. The TL light emitted by samples heated with treatments between 500 and 900°C and, then, irradiated showed that TL sensibility of kunzite is increased for 900°C by a factor of 3. Since X-ray diffraction of all heat treated samples shows changes in diffraction lines, keeping their crystallinity, such heat treatment seems to produce rearrangement of reflection planes, as well as, of grain sizes. The spectrum of TL emission consists of a very large band around 610nm and a very weak one around 480nm. This means that during heating from TL reading, most of the liberated electrons recombine with only one recombination center, with has been identified as the aluminum center, [AlO4/h]. The TL measurements of an irradiated and non-irradiated artificial polycrystal showed that except for the 350 and 370°C TL peaks, the others are due to intrinsic defects. This conclusion is confirmed by the TL emissions spectra, which shows in the artificial sample the same band at 610nm. The UV light from a fluorescence lamp or usual Hg lamp induce thermoluminescence after 3h or longer exposure. Since photon energy from such UV source is about half of spodumene band gap energy or of other silicate crystals, we assume that it is a two-photon absorption process. Under very long time exposure to UV light, the intensity of the TL peak at 460°C decreases, while high energy photons produce an increase in the intensity until it reaches saturation. It is quite possible that, while the irradiation time is less than ~20h the filling traps (relative to 460°C TL peak) predominante, but, as a large number of the traps are filled, phototranfer becomes effetive emptying these traps. Of course, bleaching process also contribute to decrease the 460°C TL peak. The thermoluminescence induced by Hg lamp UV light, as well as by synchrotron VUV light, differs from that induced by high energy photons, for instance X- or y-rays. So far, no explanation was found. A relatively heavy irradiation creates in the crystal oxygen vacancies, which become F-center after capturing electrons released by ionization. The kunzite then becomes green coloured. The optical absorption bands at 630, 470, 360 and 31 O nm belong to this F-center. All of them are annealed out in the 150 to 250°C temperature region. Since the TL peak at 220°C has similar thermal behaviour, this peak is correlated to the F-center. In silica and silicate crystals there is a tendency for substitution of Si4+ by AI3+. The charge neutrality is guaranteed by alkaline ions, in the case of kunzite by Na+ ions, usually present. Then, during irradiation one has: Lattice with O2- --irrad. Vacancy of O2- in the lattice Vac. O2- + 2e- F-center [AlO4 / M] --irrad. [ALO.]- + M+ [ALO4]- + h [AlO4]- /h] = aluminum center During the TL reading (heating): F-center --heat Vac.O + 2e- (or E1\' +e-) [AlO4 / h] + e- [ALO4]- + hv TL (220°C TL peak) The optical absorption band at 530nm is correlated with lilac colour of kunzite, therefore, it is related to Mn3+. Since heating from 200 to 300°C enhances the colour it was assumed that Mn4+ traps an electron becoming Mn3+. The lilac colour of kunzite fades beyond 300°C leaving the kunzite colourless around 400°C. On the other hand, TL peaks at 350 and 370°C decrease similarly between 300 and 400°C, therefore, it was concluded that these TL peaks are correlated with Mn3+ centers responsible for the 530nm OA band. A week EPR signal with g=1.997 was observed, which decays in a very similar way to 460°C TL peak. Hence we conclude that they are one and the same center. Its nature was not identified, although the experimental result show that it is E1 -like center.
|
7 |
Efeito da radiação UV e gama nas propriedades de absorção óptica, de ressonância paramagnética eletrônica e de termoluminescência na kunzita / Effect of UV and gamma radiation on the properties of optical absorption, electron paramagnetic resonance and thermoluminescence in kunziteSusana Oliveira de Souza 26 February 2002 (has links)
O espodumênio (LiAl Si IND 2 O IND 6) de cor lilás, chamado kunzita, encontrado no Estado de Minas Gerais, foi investigado no presente trabalho. A análise de fluorescência de raios-X revelou, além das componentes básicas Si 0 IND 2, Al IND 2 O IND 3 e Li IND 2O, várias impurezas, sendo Mn e Fe as principais. Para comparação com o material natural, um policristal \"puro\" de -espodumênio foi produzido pela devitrificação de um vidro obtido da mistura de Si 0 IND 2, Al IND 2 0 IND 3 e Li IND 2 0. Esse método de devitrificação proporciona um processo importante e relativamente simples para produzir um policristal puro que pode ser usado na comparação do material natural. A curva de emissão termoluminescente (TL) da amostra recozida em 600°C por 1h apresentou picos em 145, 215, 350, 370 e 460°C, após uma irradiação com doses entre 10 e 5000Gy. A resposta TL desses picos, acima de 50Gy, é supralinear. A luz TL emitida por amostras naturais recozidas entre 500 e 900°C e, então, irradiadas, mostra que com o tratamento térmico em 900°C a sensibilidade TL aumenta por um fator de 3 comparado com o recozimento entre 500 e 800°C. Esses tratamentos térmicos afetam, também, a estrutura cristalina, mantendo a cristalinidade, mas produzindo um rearranjo nos planos de reflexão e no tamanho dos grãos. O espectro da luz TL da amostra natural apresenta uma banda em torno de 610nm, intensa e larga (-200nm) para todos os picos, embora uma banda muito fraca e larga seja, também, observada em torno de 480nm. Isto significa que, praticamente todos os elétrons que chegam na BC, após o aquecimento para a leitura TL, recombinam-se com um único centro, emitindo luz em torno de 610nm, sendo ele o centro de alumínio [Al O IND 4/h]. As medidas TL do policristal irradiado e não irradiado mostram que, exceto pelos picos TL em 350 e 370°C, todos os outros são devidos à defeitos intrínsecos. Esta conclusão é confirmada pelo espectro de emissão, o qual mostra na amostra artificial a mesma banda em 610nm. A luz UV induz diretamente a termoluminescência. Como a energia dos fótons é bem inferior à largura da banda proibida, a indução de TL foi interpretada como sendo devido à absorção de dois fótons. A resposta TL observada resultantes da irradiação UV de luz syncrotron ou com lâmpadas fluorescentes ou de Hg é diferente da produzida por irradiação gama e diferente entre elas próprias. Ainda não foi encontrada explicação para o fenômeno. No início da irradiação UV, para o pico de 460°C, predomina o acúmulo de transportadores de carga nas armadilhas. Com a longa exposição (>22h) há a diminuição desse pico, prevalecendo o processo de fototransferência acompanhado de fotoesvaziamento. A irradiação intensa cria vacâncias de oxigênio, que recebem em seguida, elétrons da ionização dando origem a centros F. O cristal torna-se predominantemente verde. As bandas de absorção óptica que surgem com irradiação e pertencem a esse centro F, 310, 360, 470 e 630nm, decaem entre 150 e 250°C. Esse comportamento é similar ao do pico TL em 220°C, indicando que esse centro TL está correlacionado ao centro F. Há forte evidência, como no quartzo contendo alumínio como impureza, que o íon de Al POT. 3+ tem a tendência de substituir o íon de Si POT 4+ no tetraedro Si O IND 4, dando origem ao centro [Al O IND 4] Este é neutralizado por um íon alcalino (Li POT. + ou Na POT. +). A irradiação remove M POT.+ e o radical resultante captura um buraco, dando origem ao centro de alumínio [Al O IND 4/h]. Foi aqui proposto, por isso, o seguinte mecanismo de emissão da luz TL em torno de 220°C: i) Durante a irradiação formam-se os centros F e os centros de alumínio. ii) Durante o aquecimento na região de 150°C a 220°C para a leitura TL, tem-se: a. Centro F ---- calor Vacância de O + 2e POT (ou E IND 1+ e POT. ). b. [Al 0 IND 4 /h]+ e POT - [Al O IND 4] POT - + hv IND. TL (pico de 220°C) Foi constatado que a banda de AO em 530nm cresce entre 200 e 300°C, decaindo além de 300°C, para tornar a kunzita incolor em torno de 400°C. Como o Mn POT .3+ é suposto ser o responsável pela cor lilás, ele dá origem à banda em 530nm. Por outro lado, o tratamento térmico isócrono mostra que os picos TL em 350°C e 370°C decaem entre 320 e 375°C, mostrando que há forte correlação entre a banda de absorção em 530nm e os picos TL em 350 e 370°C. Foi, então, proposto que o Mn POT. 4+, presente na amostra, se torna Mn POT. 3+ como aquecimento entre 200 e 300°C, capturando um elétron. Com o aumento da concentração de Mn POT 3+a cor lilás fica mais intensa. Acima de 300°C, tem-se a liberação de um elétron do Mn POT. 3+, que se torna novamente Mn POT 4+. O elétron assim liberado pode recombinar-se com o centro de alumínio e há emissão de luz TL. Comparando-se o comportamento térmico do pico TL em 460°C e um sinal em g= 1,997 pode-se afirmar que os dois centros têm uma relação íntima. Esse centro paramagnético tem semelhança ao centro E IND 1 \', porém, nenhuma indicação definitiva dessa identificação foi encontrada. / Natural spodumene, LiAlSi2O6, of lilac colour, called kunzite, from Minas Gerais State, Brazil, was investigated. An X-ray fluorescence analysis revealed several impurities, Mn and Fe being the principal ones, besides the matrix components SiO2, Al2O3 and Li2O. For comparison a pure policrystal of -spodumene was produced by devitrifying a glass obtained from Si02, Al2O3 and Li2O. The devitrification process has proved to be an important and relatively simple process to produce a \"pure\" polycrystal, which can be used for comparison with a natural sample. The TL glow curves of kunzite annealed at 600°C for 1h presented TL peaks at 145, 215, 350, 370 and 460°C, after gamma-irradiation with doses varying between 10 and 5000Gy. The TL response of these peaks, above 50 Gy, is supralinear. The TL light emitted by samples heated with treatments between 500 and 900°C and, then, irradiated showed that TL sensibility of kunzite is increased for 900°C by a factor of 3. Since X-ray diffraction of all heat treated samples shows changes in diffraction lines, keeping their crystallinity, such heat treatment seems to produce rearrangement of reflection planes, as well as, of grain sizes. The spectrum of TL emission consists of a very large band around 610nm and a very weak one around 480nm. This means that during heating from TL reading, most of the liberated electrons recombine with only one recombination center, with has been identified as the aluminum center, [AlO4/h]. The TL measurements of an irradiated and non-irradiated artificial polycrystal showed that except for the 350 and 370°C TL peaks, the others are due to intrinsic defects. This conclusion is confirmed by the TL emissions spectra, which shows in the artificial sample the same band at 610nm. The UV light from a fluorescence lamp or usual Hg lamp induce thermoluminescence after 3h or longer exposure. Since photon energy from such UV source is about half of spodumene band gap energy or of other silicate crystals, we assume that it is a two-photon absorption process. Under very long time exposure to UV light, the intensity of the TL peak at 460°C decreases, while high energy photons produce an increase in the intensity until it reaches saturation. It is quite possible that, while the irradiation time is less than ~20h the filling traps (relative to 460°C TL peak) predominante, but, as a large number of the traps are filled, phototranfer becomes effetive emptying these traps. Of course, bleaching process also contribute to decrease the 460°C TL peak. The thermoluminescence induced by Hg lamp UV light, as well as by synchrotron VUV light, differs from that induced by high energy photons, for instance X- or y-rays. So far, no explanation was found. A relatively heavy irradiation creates in the crystal oxygen vacancies, which become F-center after capturing electrons released by ionization. The kunzite then becomes green coloured. The optical absorption bands at 630, 470, 360 and 31 O nm belong to this F-center. All of them are annealed out in the 150 to 250°C temperature region. Since the TL peak at 220°C has similar thermal behaviour, this peak is correlated to the F-center. In silica and silicate crystals there is a tendency for substitution of Si4+ by AI3+. The charge neutrality is guaranteed by alkaline ions, in the case of kunzite by Na+ ions, usually present. Then, during irradiation one has: Lattice with O2- --irrad. Vacancy of O2- in the lattice Vac. O2- + 2e- F-center [AlO4 / M] --irrad. [ALO.]- + M+ [ALO4]- + h [AlO4]- /h] = aluminum center During the TL reading (heating): F-center --heat Vac.O + 2e- (or E1\' +e-) [AlO4 / h] + e- [ALO4]- + hv TL (220°C TL peak) The optical absorption band at 530nm is correlated with lilac colour of kunzite, therefore, it is related to Mn3+. Since heating from 200 to 300°C enhances the colour it was assumed that Mn4+ traps an electron becoming Mn3+. The lilac colour of kunzite fades beyond 300°C leaving the kunzite colourless around 400°C. On the other hand, TL peaks at 350 and 370°C decrease similarly between 300 and 400°C, therefore, it was concluded that these TL peaks are correlated with Mn3+ centers responsible for the 530nm OA band. A week EPR signal with g=1.997 was observed, which decays in a very similar way to 460°C TL peak. Hence we conclude that they are one and the same center. Its nature was not identified, although the experimental result show that it is E1 -like center.
|
8 |
Vliv mineralizátorů na šířku intervalu slinování a fázové transformace v soustavě Li2O-Al2O3-SiO2 / Sol-gel synthesis of a LAS glass ceramics and influence of additives on a phase transformation and crystallization.Kalinová, Helena January 2008 (has links)
Course of synthesis of Li2O – Al2O3 – SiO2 (LAS) ceramic via sol – gel process made precursor was investigated. Powder precursor containing LAS components in molar ratio 1:1:4 were prepared by polycondensation technique in aqueous medium using lithium chloride (LiCl), hydrated aluminium nitrate (Al(NO3)39H2O) and silica sol (tosil), respectively. Heated sol was transformed into gel. The resulting gel was dried at temperature 105 °C and xerogel was next calcinated at 750°C. Further was evaluated influence of sintering additives (MgO, ZnO, Ca5(PO4)3OH) on the length of sintering interval. All of them have been stabilized spodumene in the solid solution. The properties of ceramic body prepared by sintering of precursor and grinded Li2CO2, Al2O3 a SiO2 powders were compared. Simultaneous thermogravimety and differential thermal analysis (TG-DTA), X-ray diffractions and heating microscopy were used to study sintering process of LAS ceramic.
|
9 |
Vliv mineralizátorů na slinování a fázové transformace v soustavě Li2O-Al2O3-SiO2 / Sol-gel synthesis of a LAS glass ceramics and influence of additives on a phase transformation and crystallization.Kramerová, Nina January 2010 (has links)
This work is focused on Li ceramics and glass-ceramics with low thermal expansion. Composition of these material is based on mineralogical composition of ?-spodumene – Li2O•Al2O3•4SiO2. Sol-gel route of preparation was used for preparation of the material. Sol-gel route is profitable because of production of high purity and controlled grain size powder. Lower sintering temperature, higher degree of homogeneity and shorter time of heat treatment in comparison with traditional approach belong among other advantages of sol-gel route of preparation. Influence of Li+ substitution for K+, which has similar atomic radius, is assessed in this work. These ions are localized in the interstitial position of spodumene structure and are able to maintain the charge balance. Li+ ions were substituted with K+ in the amount of 0; 0,5; 1; 2; 5 and 10 wt. % in view of Li+ weight. In the next step influence of adding mineralizer was specified in the material modified this way. The effect of adding mineralizer on phase transformation and heat treatment tendency was considered. K+ were added to the mixture in the form of potash. Due to this addition forming of orthoclase phase next to spodumene, eucryptit and SiO2 (ss) was detected. Decrease in melting temperature and ability of melt to crystallize were consequence of orthoclase forming. No crystallization appears, when more than 1 wt.% of K+ was added.
|
10 |
Calculating the combined elemental composition of spodumene using La_ICP_MS in thin_sections samples from Europe.Körtge, Maximilian January 2023 (has links)
The study gives a broad background to understand the high demand of lithium batteries in the coming years, especially in Europe. The goal of the study is to use La-ICP-MS to analyse spodumene samples from different lithium deposits in Europe to get a better knowledge of the contents of trace elements in spodumene. Due to unforeseen circumstances linked to the pandemic of COVID-19. the study had to develop an own method to calculate and convert the data acquired with the La-ICP-MS into more quantitative data. The method developed requires more research and understanding before saying that it can be used for future research, especially for the calculation of major element Li, Al and Si as it showed a value difference to 20% of the “real value”. Source of contamination in the analysed samples (eucryptite) is also being discussed and its implication on the result. Results acquired using this method showed that some trace elements are indeed occurring in spodumene substituting the main elements and are found in all the different geological domains. These elements (Ga, Mn, Se, Fe, V, T) will then also occur in a concentrate of spodumene.
|
Page generated in 0.0481 seconds