• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laser Machining and Near Field Microwave Microscopy of Silver Inks for 3D Printable RF Devices

Ross, Anthony J., III 29 June 2017 (has links)
3D printable materials for RF devices need improvement in order to satisfy the demand for higher frequency and lower loss performance. Characterization of materials that have shown improvements of conductor conductivity have been performed. By using a laser machining technique the loss of a 3D printed 2.45 GHz microstrip Square Open Loop Resonator (SOLR) bandpass filter has been shown to improve by 2.1dB, along with an increase in bandwidth from 10% to 12.7% when compared to a SOLR filter that has not been laser machined. Both laser machined and microwaved silver inks have been mapped for conductivity using a Near Field Microwave Microscope (NFMM) and have shown improvement of conductivity compared to inks that have been cured using standard methods.
2

A Study on 2.45 GHz Bandpass Filters Fabricated With Additive Manufacturing

Arnal, Nicholas Christian 16 September 2015 (has links)
Square open loop resonator (SOLR) bandpass filters fabricated with additive manufacturing techniques are presented and studied. One filter contains novel 3D capacitive plates used to enhance resonator coupling. The filters are centered at 2.45 GHz and loaded with capacitors for miniaturization as low as 21% that of a conventional SOLR bandpass filter. The pass-band insertion loss of the filters ranges from 3.8 dB to 5.5 dB and the 3 dB bandwidth ranges from 180 MHz to 250 MHz. Also, degradation in the effective conductivity of printed ink as a function of substrate roughness is analyzed. Finally, a study of dielectric and metallic 3D printing processes that are candidates for digital manufacturing of integrated mobile phone client antennas is presented.

Page generated in 0.0656 seconds