• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hodnocení porezity u tlakově litých odlitků z Al slitin / Evaluation of porosity in Al-alloy die-castings

Havel, Jiří January 2012 (has links)
The aim of this diploma thesis is to analyse the porosity of die - cast cast that were made of the alloy AISi9u3 in iron-foundry Skoda Car Mlada Boleslav. The analysis and the sample comparisons are based on my own measurements and are also connected with previous diploma thesis which deals with that issue and was drawn up at Technical University in Brno. All measurements were statistically tested.
12

Casting and Analysis of Squeeze Cast Aluminium Silicon Eutectic Alloy

Smillie, Matthew John January 2006 (has links)
Squeeze casting is the practise of solidifying metals under mechanically applied pressure via a slow displacement of a die volume. It has been shown that squeeze casting enhances the mechanical properties of cast metals. Research into other high integrity casting processes has shown that using techniques that enhance melt quality can further increase the mechanical properties. Therefore a bottom-tapped, bottom-fed squeeze casting machine was designed and built around a pre-existing squeeze casting die designed for uniaxial pressure application. This was used to obtain quantitative metallurgical and microstructural information on the squeeze castings produced, including the effects of common micro-alloying additions of strontium modifier and titanium modifier on the microstructure and hardness of a commercial aluminium silicon eutectic alloy. These were examined using a Taguchi design of experiments approach. It was found that squeeze casting reduced porosity and secondary dendrite arm spacing and increased hardness, and reduced or eliminated increases in porosity and secondary dendrite arm spacing associated with micro-alloying addition. The size of possibly deleterious iron-rich precipitates was reduced, and the morphology of such precipitates changed to a possibly less deleterious form without further alloy additions of manganese. It was also found that melt control and handling is essential for consistent quality of castings in the production of small volume squeeze castings, such as the ones produced in this experimental work.
13

Squeeze Casting as Alternative Fabrication Process for Carbon Fiber Reinforced Aluminium Matrix Composites

Alam, Muhammad Faisal 25 July 2013 (has links)
Aluminium matrix composites are among the most promising candidate materials for light weight and high strength applications such as transportation and armour. In a previous study 6061 aluminum matrix composites reinforced with plain weave carbon fiber preform (AS4 Hexcel) were successfully fabricated by squeeze casting using the laminate fabrication technique. This research aims at optimizing the fabrication process in order to achieve improved strength and mechanical properties. It focuses on the liquid infiltration squeeze casting method. Good mechanical bonding between fiber and aluminium is achieved thanks to improved infiltration and impregnation of the fabric by liquid aluminium. Oxidation products at fiber/aluminium interface and porosity are reduced. As a result, composites are produced with overall improved mechanical properties. The flexural strength is increased by up to 19.9% and 15.4% compared to the laminate approach and the reference 6061 aluminium alloy squeeze cast under identical conditions, respectively. Similarly, overall hardness is improved. However, the impact strength is reduced by 7.76% and 25.78% when compared to casts fabricated by the laminate method and the reference aluminium alloy, respectively. The thesis constitutes a good basis for further research on fiber and particle reinforced aluminium matrix composites with the goal of further improving fracture toughness, particularly for gradient materials used in armour applications.
14

Studies On Squeeze Cast Copper Based Metal Matrix Composites

Prakasan, K 06 1900 (has links) (PDF)
No description available.
15

Studium nízkocyklových únavových vlastností hořčíkové slitiny AZ31 s 0,5% vápníku. / Study of Low Cycle Fatigue Properties of Magnesium Alloy AZ31 with 0,5% Calcium.

Gejdoš, Pavel January 2009 (has links)
In this work have been identified mechanical and fatigue properties of magnesium alloy AZ31 with 0.5% calcium, which was cast using squeeze casting. In addition, it was observed microstructure of the alloys and made fractographic assessment of fracture surfaces after fatigue loading.
16

Hodnocení mechanických a strukturních vlastností nového bloku / Evaluation of mechanical and structural properties of new block

Lefner, Jiří January 2009 (has links)
The purpose of this dilploma thesis is to evaluate mechanical and structural properties of two types casts of Al-alloy (components of the engine block) which were made by different technologies. Die casting with local squeeze casting and without local squeeze casting. First of them is used in lot manufacture of the current engine block. The aim of the foundry is to change the technology and start to produce new block by the die casting without local squeeze casting. The samples were taken from the both parts (lower and upper part) of the current and the new engine block which are made in foundry of Skoda Auto a.c. in Mladá Boleslav. Sets of mechanical and structural properties were selected, evaluated and tested by statistical programs. It was used fifty casts of the engine blocks for the experiment.
17

Mechanicko-strukturní charakteristiky slitiny hořčíku AZ61. / Determination of mechanical properties and structural evaluation of the alloy AZ61

Svozil, Libor Unknown Date (has links)
Microstructure and mechanical properties of AZ61 magnesium alloy in cast condition and after solution annealing were compared. The compare of mechanical properties of alloy, their hardness and microanalysis of occurring phases are included in this work. For compare has been used a light microscopy, tensile test, hardness measurements and scanning electron microscopy.
18

Únavové charakteristiky hořčíkové slitiny AZ31 po korozní degradaci / Fatigue properties of magnesium alloy AZ31 after corrosion degradation

Horynová, Miroslava January 2011 (has links)
The present study is focussed on assessment of cyclic deformation response and fatigue behaviour of bare and precorroded AZ31 magnesium alloys. Corrosion degradation was carried out in a salt spray fog (5% solution of sodium chloride) for 480 and 1000 hrs. Microstructure, mechanical properties, low- and high-cycle fatigue behaviour of experimental material in as-cast condition has been evaluated. Furthermore, the corrosion behaviour of material has been investigated. The fatigue tests have been performed using precorroded specimens to assess influence of corrosion degradation on cyclic deformation response and on low- and high-cycle fatigue behaviour. Influence of local corrosion degradation on initiation of fatigue cracks has been studied.
19

Struktura a vlastnosti hořčíkových slitin Mg-Ca-Zn / Structure and properties of magnesium alloys Mg-Ca-Zn

Hlavnička, Jiří January 2014 (has links)
This master’s thesis deals with design and preparation of a new biodegradable magnesium alloy based on Mg-Ca-Zn. Based on information from literature, the Mg-3Zn-2Ca alloy was designed. The base material was produced by gravity casting and the evaluation in the as-cast and heat treated state was performed. For preparation of the experimental material, following methods were designed: squeeze casting, hot rolling and the ECAP. During preparation by hot rolling, no optimal conditions were found and significant cracks occurred in both as-cast and heat treated material. In the case of experimental material, prepared by the ECAP method with back-pressure, better combination of stress-strain properties was observed. Also the squeeze casting method showed improvement; especially the amount of casting defects was eliminated. The evaluation of microstructure and mechanical properties was performed by the light and scanning electron microscopy, RTG phase analysis and the tensile and compression tests.
20

Squeeze Casting as Alternative Fabrication Process for Carbon Fiber Reinforced Aluminium Matrix Composites

Alam, Muhammad Faisal January 2013 (has links)
Aluminium matrix composites are among the most promising candidate materials for light weight and high strength applications such as transportation and armour. In a previous study 6061 aluminum matrix composites reinforced with plain weave carbon fiber preform (AS4 Hexcel) were successfully fabricated by squeeze casting using the laminate fabrication technique. This research aims at optimizing the fabrication process in order to achieve improved strength and mechanical properties. It focuses on the liquid infiltration squeeze casting method. Good mechanical bonding between fiber and aluminium is achieved thanks to improved infiltration and impregnation of the fabric by liquid aluminium. Oxidation products at fiber/aluminium interface and porosity are reduced. As a result, composites are produced with overall improved mechanical properties. The flexural strength is increased by up to 19.9% and 15.4% compared to the laminate approach and the reference 6061 aluminium alloy squeeze cast under identical conditions, respectively. Similarly, overall hardness is improved. However, the impact strength is reduced by 7.76% and 25.78% when compared to casts fabricated by the laminate method and the reference aluminium alloy, respectively. The thesis constitutes a good basis for further research on fiber and particle reinforced aluminium matrix composites with the goal of further improving fracture toughness, particularly for gradient materials used in armour applications.

Page generated in 0.0537 seconds