Spelling suggestions: "subject:"squeezeseg"" "subject:"squeezenet""
1 |
Sensor capture and point cloud processing for off-road autonomous vehiclesFarmer, Eric D 01 May 2020 (has links)
Autonomous vehicles are complex robotic and artificial intelligence systems working together to achieve safe operation in unstructured environments. The objective of this work is to provide a foundation to develop more advanced algorithms for off-road autonomy. The project explores the sensors used for off-road autonomy and the data capture process. Additionally, the point cloud data captured from lidar sensors is processed to restore some of the geometric information lost during sensor sampling. Because ground truth values are needed for quantitative comparison, the MAVS was leveraged to generate a large off-road dataset in a variety of ecosystems. The results demonstrate data capture from the sensor suite and successful reconstruction of the selected geometric information. Using this geometric information, the point cloud data is more accurately segmented using the SqueezeSeg network.
|
2 |
Object detection and sensor data processing for off-road autonomous vehiclesFoster, Timothy 30 April 2021 (has links)
Autonomous vehicles require intelligent systems to perceive and navigate unstructured envi- ronments. The scope of this project is to improve and develop algorithms and methods to support autonomy in the off-road problem space. This work explores computer vision architectures to support real-time object detection. Furthermore, this project explores multimodal deep fusion and sensor processing for off-road object detection. The networks are compared to and based off of the SqueezeSeg architecture. The MAVS simulator was utilized for data collection and semantic ground truth. The results indicate improvements from the SqueezeSeg performance metrics.
|
Page generated in 0.0463 seconds