• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anwendung stabiler Isotope zur Beschreibung des mikrobiellen Abbaus organischer Schadstoffe in kontaminierten Aquiferen

Vieth, Andrea. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Kiel. / Enth. 9 Sonderabdr. aus verschiedenen Zeitschr. und Publ. Beitr. teilw. dt., teilw. engl.
2

The role of detrital subsidies for biological control by generalist predators evaluated by molecular gut content analysis

Berg, Karsten von. Unknown Date (has links) (PDF)
Darmstadt, Techn. University, Diss., 2007.
3

Trophic interactions as indicators of ecosystem regeneration in disturbed grassland a stable isotope approach /

Rothe, Jan. Unknown Date (has links) (PDF)
University, Diss., 2004--Jena.
4

A single-cell view on the intra- and inter-population metabolic heterogeneity and ecophysiology of microorganisms at different ecological scales

Calabrese, Federica 04 November 2021 (has links)
Metabolic heterogeneity (MH) occurs when isogenic microbial populations display cell-to-cell differences in metabolic traits, albeit exposed to homogeneous conditions. Despite the increasing focus on MH, its triggering factors remain largely unknown. In the present thesis, I used stable isotope probing and chemical imaging with nanoscale Secondary Ion Mass Spectrometry (nanoSIMS) to study MH at single-cell level, in model organisms, synthetic and natural communities, to understand i) how abiotic factors, biotic interactions and antibiotics exposure influence MH and ii) its potential ecological role. Moreover, I optimized sample preparation for chemical and high-resolution imaging and suggested two different indices as ‘unit measure’ of MH. As results, I have shown for the first time that MH is displayed by microorganisms under favorable growth conditions, although none of the tested abiotic factors prevailed as the main trigger of MH. I brought insights on how biotic interactions play a role in the functional heterogeneity using bacteria pseudo-fungi co-cultures. I found that antibiotics reduce Carbon and Nitrogen assimilation rates of targeted phylogenetic groups in river-water communities, while increasing their MH, pointing to its ecological importance in natural environments. To conclude, I provided novel insights on the phenomenon of MH and its dynamics at different ecological scales.:Abbreviation list Summary Introduction Knowledge gaps Results and discussion - Optimization of sample preparation - Validation of quantitation methods - Abiotic factors shaping metabolic heterogeneity in bacterial populations - Influence of biotic factors in shaping heterogeneity - Metabolic Heterogeneity and ecophysiology of natural microbial populations influenced by emerging contaminants Conclusions Outlook Bibliography Appendix Acknowledgments Curriculum Vitae List of publications

Page generated in 0.0347 seconds