• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemische Manipulation von Einzelzellen in mikrofluidischen Umgebungen

Schumann, Claus Angermund January 2009 (has links)
Zugl.: Dortmund, Techn. Univ., Diss., 2009
2

Implementation and application of bioinformatics methods to analyze and visualize single-cell RNA-sequencing data / Implementierung und Anwendung von bioinformatischen Methoden zur Analyse und Visualisierung von Einzelzell-Sequenzierungsdaten

Vafadarnejad, Ehsan January 2022 (has links) (PDF)
RNA sequencing (RNA-seq) has become a transformative method to profile genome-wide gene expression and whole transcriptome analysis over the last decade. In recent years, with the development of new technologies, it has become possible to study gene expression at single-cell level. This new advances in single-cell RNA-sequencing has revolutionized the way scientists study biological processes. Single-cell RNA-sequencing has been used in different areas to better understand the underlying mechanisms of biological processes. In particular, single-RNA-sequencing is a suitable method to study infectious diseases. Infection is composed of heterogeneous mechanisms on either the host or pathogen side and the best way to understand the heterogeneity of these mechanisms and how they interact with each other is to study infectious diseases at the single-cell level. Studying infection processes at the single-cell level can reveal not only the heterogeneity but also the dynamics of infection and the interplay between the host and pathogen at the molecular level. In this thesis, we implemented and applied different single-cell RNA-seq technologies to better understand infectious diseases. In the present work, we conducted four independent but related research works to shed light on different aspects of infection biology: ● We took advantage of this novel technology to study the consequences of RSV infection on primary human epithelial cells. The primary human epithelial cells were collected from six donors and cultured in air liquid interface (ALI) cell culture inoculated with respiratory syncytial virus (RSV). In this project, we discovered ciliated cells as the susceptible cell types in RSV infection. We applied viral load as an indicator of infection progression and used it to reconstruct the dynamics of host response to RSV infection. Reconstruction of the dynamics of infection revealed many host genes and pathways that were suppressed or induced as a result of RSV infection. Pathways related to innate immune response and interferon response were suppressed during the progression of infection and on the other hand pathways like protein targeting to endoplasmic reticulum and apoptosis were induced. ● We developed a new method which is capable of sequencing the transcriptome of a bacterium at the single-cell level and potentially can help us to characterize the bacterial heterogeneity during the course of infection. In this research project, bacteria were cultured in three different culture conditions namely Late stationary phase, Anaerobic shock and NaCl shock and we used a poly(A)-independent single-cell RNA-sequencing protocol to sequence bacteria at the single-cell level. In this work, we report the faithful capture of growth-dependent gene expression patterns in individual Salmonella and Pseudomonas bacteria. The results of our analysis showed that not only we could capture transcripts across different RNA classes but also our method is capable of discerning the transcriptome of bacteria across different culture conditions. ● We used single-cell RNA-sequencing technology to characterize the immune cells landscape over the course of atherosclerosis. Atherosclerosis is considered a cardiac disease which is highly related to infections and previous infections with bacteria or viruses is considered as a risk factor for atherosclerosis. We performed single-cell RNA sequencing of aortic CD45+ cells extracted from healthy and atherosclerotic aorta of mice. We managed to find certain cell populations which were specifically present in atherosclerotic mice. One of the atheroschelorotic populations was previously undescribed TREM2high macrophages showing enrichment in Trem2 gene expression. This population of macrophages seemed to be involved in functions like lipid metabolism and catabolism and lesion calcification. This work revealed the phenotypic heterogeneity and immune cells landscape of different immune cell populations at different stages of atherosclerosis. Our work paves the way to better describe the relation between different infectious diseases and cardiovascular diseases. ● We developed a web-based platform called Infection Atlas to browse and visualize single-cell RNA-sequencing data. Infection Atlas platform provides a user-friendly interface to study different aspects of infectious diseases at the single-cell level and can potentially promote targeted approaches to intervene in infectious diseases. This platform which is available at infection-atlas.org in the short term provides a user-friendly interface to browse and visualize different aspects of infectious diseases and in the long-term is expected to be a comprehensive atlas of infection in human and mouse across different tissues and different pathogens. Overall, in this thesis we provide a framework to study infectious diseases at the single cell level with providing novel data analysis methods and this thesis paves the way for future studies to study host-pathogen encounters at the single-cell level. / RNA-Sequenzierung (RNA-Seq) ist in den letzten zehn Jahren zu einer revolutionären Technik für genomweite Genexpressionsanalysen, sowie für Gesamt-Transkriptom-Analysen geworden. In den letzten Jahren ist es mit der Entwicklung neuer Technologien möglich geworden die Genexpression auf Einzelzell-Niveau zu untersuchen. Diese Fortschritte in der Einzelzell-RNA- Sequenzierung haben die Art wie Wissenschaftler biologische Prozesse betrachten von Grund auf verändert. Einzelzell-Sequenzierung wird in unterschiedlichen Bereichen angewendet, um die grundlegenden Mechanismen biologischer Prozesse besser zu verstehen. Besonders Einzelzell-Sequenzierung ist eine geeignete Methode, um Infektionskrankheiten zu untersuchen. Infektionen sind durch heterogene Mechanismen auf Wirts- und Erreger Seite gekennzeichnet. Der beste Weg die Heterogenität dieser Mechanismen zu verstehen und wie sie interagieren ist die Analyse von Infektionskrankheiten auf Einzelzell-Niveau. Untersuchungen von Infektionsprozessen auf Einzelzell-Ebene können nicht nur die Heterogenität, sondern auch die Dynamik einer Infektion und das Wechselspiel zwischen Wirt und Pathogen auf molekularer Stufe aufzeigen. In dieser Dissertation wurden unterschiedliche Einzelzell-RNA-Sequenzierung Technologien implementiert und angewandt um ein besseres Verständnis von Infektionskrankheiten zu erlangen. In der vorliegenden Arbeit haben wir vier unabhängige, aber verwandte Forschungsarbeiten durchgeführt, um unterschiedliche Aspekte von Infektionsbiologie näher zu betrachten. ● Wir nutzten die Vorteile dieser neuen Technologie, um die Konsequenzen einer RSV Infektion bei primären humanen Epithelzellen zu untersuchen. Die primären humanen Epithelzellen stammten von sechs Spendern und wurden in Luft-Flüssigkeits-Grenzflächen (ALI) Zellkultur mit dem Respiratorischen Syncytial-Virus (kurz RS-Virus) infiziert. In diesem Projekt konnten wir ciliierte Zellen als anfällige Zelltypen einer RSV Infektion zeigen. Wir haben die Viruslast als Indikator für den Fortschritt der Infektion herangezogen, als auch für die Rekonstruktion der Wirtsantwort Dynamik gegenüber einer RSV Infektion. Die Rekonstruktion der Infektionsdynamik zeigte viele Wirtsgene und Signalwege, die durch die RSV Infektion unterdrückt oder induziert wurden. Signalwege, die mit der angeborenen Immunantwort und der Interferonantwort assoziiert waren, wurden durch die fortschreitende Infektion unterdrückt und andererseits waren Signalwege, wie die Zielsteuerung von Proteinen zum endoplasmatischen Retikulum und Apoptose induziert. ● Wir haben eine neue Methode entwickelt, die es ermöglicht das Transkriptom eines Bakteriums auf Einzelzell-Niveau zu sequenzieren und potenziell helfen könnte die bakterielle Heterogenität während des Verlaufs einer Infektion zu charakterisieren. In diesem Forschungsprojekt wurden Bakterien unter folgenden drei unterschiedlichen Konditionen angezogen: Späte stationäre Phase, anaerober Schock und Natriumchlorid Schock. Anschließend wendeten wir ein poly(A) unabhängiges Einzelzell-RNA Sequenzier-Protokoll an, um Bakterien auf Einzelzell-Niveau zu sequenzieren. In dieser Arbeit berichten wir die von wachstumsabhängigen Genexpressionsmustern in einzelnen Salmonellen und Pseudomonaden. Das Ergebnis unserer Analyse zeigte, dass wir nicht nur Transkripte unterschiedlicher RNA-Klassen, sondern auch das Transkriptom von Bakterien in unterschiedlichen Wachstumsbedingungen erfassen können. ● Wir haben Einzelzell-RNA Sequenzierungs-Technologien verwendet, um die Immunzellen Zusammensetzung während des Verlaufs der Athereosklerose zu betrachten. Die Atherosklerose wird als Herzkrankheit betrachtet, die eng mit Infektionen in Zusammenhang gebracht wird. Vorherige Infektionen mit Bakterien oder Viren werden als Risikofaktor für Atherosklerose angenommen. Wir haben für aortische CD45 Zellen von der gesunden und atherosklerotischen Aorta von Mäusen Einzelzell-RNA-Sequenzierungen durchgeführt. Hierbei konnten wir bestimmte Zellpopulationen identifizieren, die spezifisch in atherosklerotischen Mäusen vorkommen. Eine der athereosklerotischen Populationen war eine zuvor unbeschriebene TREM2high Makrophagen Population, die eine erhöhte Trem2 Genexpression zeigte. Diese Population von Makrophagen schien in Funktionen wie Lipid Metabolismus, Katabolismus, sowie Kalzifizierung von Verletzungen involviert zu sein. Diese Arbeit hat die phänotypische Heterogenität und das Feld unterschiedlicher Immunzellpopulationen in unterschiedlichen Stadien der Atherosklerose aufgezeigt. Unsere Arbeit bereitet den Weg, um die Beziehung zwischen unterschiedlichen Infektionskrankheiten und kardiovaskulären Krankheiten besser zu beschreiben. ● Wir haben eine webbasierte Plattform namens „Infektionsatlas“ entwickelt, um Einzelzell-RNA-Sequenzierungsdaten zu visualisieren und zu durchsuchen. Die „Infektionsatlas“ Plattform stellt eine nutzerfreundliche Oberfläche zur Untersuchung von unterschiedlichen Aspekten von Infektionskrankheiten auf Einzelzell-Niveau bereit und kann möglicherweise zielgerichtete Ansätze voranzutreiben, um Infektionskrankheiten zu verhindern. Diese Plattform, die unter „infection-atlas.org“ verfügbar ist, bietet im Moment eine nutzerfreundliche Oberfläche zum Durchsuchen und Darstellen unterschiedlicher Aspekte von Infektionskrankheiten. Langfristig soll es ein umfangreicher Atlas für Infektionen in Maus und Mesch in unterschiedlichen Geweben und unterschiedlichen Pathogenen. Insgesamt stellen wir in dieser Dissertation einen Rahmen zur Untersuchung von Infektionskrankheiten auf Einzelzell-Ebene mit neuen Methoden für die Datenanalyse zur Verfügung und bereiten den Weg für weitere Studien um Wirts-Pathogen Interaktionen auf Einzellzell-Niveau zu untersuchen.
3

Development of novel experimental approaches to decipher host-pathogen interaction at the single-cell level / Entwicklung neuer experimenteller Ansätze zur Entschlüsselung von Wirt-Pathogen-Interaktion auf Einzelzellebene

Imdahl, Fabian Dominik January 2023 (has links) (PDF)
Abstract: COVID-19 has impressively shown how quickly an emerging pathogen can have a massive impact on our entire lives and show how infectious diseases spread regardless of national borders and economic stability. We find ourselves in a post-antibiotic era and have rested too long on the laurels of past research, so today more and more people are dying from infections with multi-resistant germs. Infections are highly plastic and heterogeneous processes that are strongly dependent on the individual, whether on the host or pathogen side. Improving our understanding of the pathogenicity of microorganisms and finding potential targets for a completely new class of drugs is a declared goal of current basic research. To tackle this challenge, single-cell RNA sequencing (scRNA-seq) is our most accurate tool. In this thesis we implemented different state of the art scRNA-seq technologies to better understand infectious diseases. Furthermore, we developed a new method which is capable to resolve the transcriptome of a single bacterium. Applying a poly(A)-independent scRNA-seq protocol to three different, infection relevant growth conditions we can report the faithful detection of growth-dependent gene expression patterns in individual Salmonella Typhimurium and Pseudomonas aeruginosa bacteria. The data analysis shows that this method not only allows the differentiation of various culture conditions but can also capture transcripts across different RNA species. Furthermore, using state of the art imaging and single-cell RNA sequencing technologies, we comprehensively characterized a human intestinal tissue model which in further course of the project was used as a Salmonella enterica serovar Typhimurium infection model. While most infection studies are conducted in mice, lacking a human intestinal physiology, the in vitro human tissue model allows us to directly infer in vivo pathogenesis. Combining immunofluorescent imaging, deep single-cell RNA sequencing and HCR-FISH, applied in time course experiments, allows an unseen resolution for studying heterogeneity and the dynamics of Salmonella infection which reveals details of pathogenicity contrary to the general scientific opinion. / Zusammenfassung: COVID-19 hat eindrucksvoll gezeigt, wie schnell ein neu auftretender Erreger massive Auswirkungen auf unser aller Leben haben kann und wie sich Infektionskrankheiten unabhängig von Landesgrenzen und wirtschaftlicher Stabilität ausbreiten. Wir befinden uns in einer post-antibiotischen Ära und haben uns zu lange auf den Lorbeeren der vergangenen Forschung ausgeruht, so dass heute immer mehr Menschen an Infektionen mit multiresistenten Keimen sterben. Infektionen sind sehr plastische und variable Prozesse, die stark vom Individuum abhängen, sei es auf Seiten des Wirts oder des Erregers. Die Pathogenität von Mikroorganismen besser zu verstehen und potenzielle Angriffspunkte für eine völlig neue Klasse von Arzneimitteln zu finden ist ein erklärtes Ziel der aktuellen Grundlagenforschung. Um diese Herausforderung zu meistern, ist die Einzelzell-RNA-Sequenzierung (scRNA-seq) unser präzisestes Werkzeug. In dieser Arbeit haben wir verschiedene hochmoderne scRNA-seq-Technologien eingesetzt, um Infektionskrankheiten besser zu verstehen. Darüber hinaus haben wir eine neue Methode entwickelt, die in der Lage ist, das Transkriptom eines einzelnen Bakteriums aufzulösen. Durch die Anwendung eines poly(A)-unabhängigen scRNA-seq-Protokolls unter drei verschiedenen, infektionsrelevanten W achstumsbedingungen konnten wir die wachstumsabhängigen Genexpressionsmuster in einzelnen Salmonella Typhimurium- und Pseudomonas aeruginosa- Bakterien zuverlässig nachweisen. Die Datenanalyse zeigt, dass diese Methode nicht nur die Differenzierung verschiedener Kulturbedingungen ermöglicht, sondern auch Transkripte über verschiedene RNA-Spezies hinweg erfassen kann. Darüber hinaus haben wir unter Verwendung modernster Bildgebungs- und Einzelzell-RNA- Sequenzierungstechnologien ein menschliches Darmgewebemodell umfassend charakterisiert, das im weiteren Verlauf des Projekts als Salmonella Typhimurium-Infektionsmodell verwendet wurde. Während die meisten Infektionsstudien in Mäusen durchgeführt werden, denen die menschliche Darmphysiologie fehlt, ermöglicht uns das in vitro Modell des menschlichen Gewebes direkte Rückschlüsse auf die Pathogenese in vivo. Die Kombination aus immunfluoreszierender Bildgebung, deep single-cell RNA Sequenzierung und HCR-FISH, angewandt in Zeitverlaufsexperimenten, ermöglicht eine bisher ungesehene Auflösung zur Untersuchung von Heterogenität und Dynamik einer Salmonella Infektion, welche Details der Pathogenität entgegen der allgemeinen wissenschaftlichen Meinung offenbaren.
4

A single-cell view on the intra- and inter-population metabolic heterogeneity and ecophysiology of microorganisms at different ecological scales

Calabrese, Federica 04 November 2021 (has links)
Metabolic heterogeneity (MH) occurs when isogenic microbial populations display cell-to-cell differences in metabolic traits, albeit exposed to homogeneous conditions. Despite the increasing focus on MH, its triggering factors remain largely unknown. In the present thesis, I used stable isotope probing and chemical imaging with nanoscale Secondary Ion Mass Spectrometry (nanoSIMS) to study MH at single-cell level, in model organisms, synthetic and natural communities, to understand i) how abiotic factors, biotic interactions and antibiotics exposure influence MH and ii) its potential ecological role. Moreover, I optimized sample preparation for chemical and high-resolution imaging and suggested two different indices as ‘unit measure’ of MH. As results, I have shown for the first time that MH is displayed by microorganisms under favorable growth conditions, although none of the tested abiotic factors prevailed as the main trigger of MH. I brought insights on how biotic interactions play a role in the functional heterogeneity using bacteria pseudo-fungi co-cultures. I found that antibiotics reduce Carbon and Nitrogen assimilation rates of targeted phylogenetic groups in river-water communities, while increasing their MH, pointing to its ecological importance in natural environments. To conclude, I provided novel insights on the phenomenon of MH and its dynamics at different ecological scales.:Abbreviation list Summary Introduction Knowledge gaps Results and discussion - Optimization of sample preparation - Validation of quantitation methods - Abiotic factors shaping metabolic heterogeneity in bacterial populations - Influence of biotic factors in shaping heterogeneity - Metabolic Heterogeneity and ecophysiology of natural microbial populations influenced by emerging contaminants Conclusions Outlook Bibliography Appendix Acknowledgments Curriculum Vitae List of publications
5

Nichtlineare Mikroskopie und Bilddatenverarbeitung zur biochemischen Analyse synchronisierter Chlamydomonas-Zellen / Non-linear microscopy and image data processing for biochemical analysis of synchronized Chlamydomonas cells

Garz, Andreas January 2013 (has links)
Unter geeigneten Wachstumsbedingungen weisen Algenkulturen oft eine größere Produktivität der Zellen auf, als sie bei höheren Pflanzen zu beobachten ist. Chlamydomonas reinhardtii-Zellen sind vergleichsweise klein. So beträgt das Zellvolumen während des vegetativen Zellzyklus etwa 50–3500 µm³. Im Vergleich zu höheren Pflanzen ist in einer Algensuspension die Konzentration der Biomasse allerdings gering. So enthält beispielsweise 1 ml einer üblichen Konzentration zwischen 10E6 und 10E7 Algenzellen. Quantifizierungen von Metaboliten oder Makromolekülen, die zur Modellierung von zellulären Prozessen genutzt werden, werden meist im Zellensemble vorgenommen. Tatsächlich unterliegt jedoch jede Algenzelle einer individuellen Entwicklung, die die Identifizierung charakteristischer allgemeingültiger Systemparameter erschwert. Ziel dieser Arbeit war es, biochemisch relevante Messgrößen in-vivo und in-vitro mit Hilfe optischer Verfahren zu identifizieren und zu quantifizieren. Im ersten Teil der Arbeit wurde ein Puls-Amplituden-Modulation(PAM)-Fluorimetriemessplatz zur Messung der durch äußere Einflüsse bedingten veränderlichen Chlorophyllfluoreszenz an einzelnen Zellen vorgestellt. Die Verwendung eines kommerziellen Mikroskops, die Implementierung empfindlicher Nachweiselektronik und einer geeignete Immobilisierungsmethode ermöglichten es, ein Signal-zu-Rauschverhältnis zu erreichen, mit dem Fluoreszenzsignale einzelner lebender Chlamydomonas-Zellen gemessen werden konnten. Insbesondere wurden das Zellvolumen und der als Maß für die Effizienz des Photosyntheseapparats bzw. die Zellfitness geltende Chlorophyllfluoreszenzparameter Fv/Fm ermittelt und ein hohes Maß an Heterogenität dieser zellulären Parameter in verschiedenen Entwicklungsstadien der synchronisierten Chlamydomonas-Zellen festgestellt. Im zweiten Teil der Arbeit wurden die bildgebende Laser-Scanning-Mikroskopie und anschließende Bilddatenanalyse zur quantitativen Erfassung der wachstumsabhängigen zellulären Parameter angewandt. Ein kommerzielles konfokales Mikroskop wurde um die Möglichkeit der nichtlinearen Mikroskopie erweitert. Diese hat den Vorteil einer lokalisierten Anregung, damit verbunden einer höheren Ortsauflösung und insgesamt geringeren Probenbelastung. Weiterhin besteht neben der Signalgewinnung durch Fluoreszenzanregung die Möglichkeit der Erzeugung der Zweiten Harmonischen (SHG) an biophotonischen Strukturen, wie der zellulären Stärke. Anhand der Verteilungsfunktionen war es möglich mit Hilfe von modelltheoretischen Ansätzen zelluläre Parameter zu ermitteln, die messtechnisch nicht unmittelbar zugänglich sind. Die morphologischen Informationen der Bilddaten ermöglichten die Bestimmung der Zellvolumina und die Volumina subzellularer Strukturen, wie Nuclei, extranucleäre DNA oder Stärkegranula. Weiterhin konnte die Anzahl subzellulärer Strukturen innerhalb einer Zelle bzw. eines Zellverbunds ermittelt werden. Die Analyse der in den Bilddaten enthaltenen Signalintensitäten war Grundlage einer relativen Konzentrationsbestimmung von zellulären Komponenten, wie DNA bzw. Stärke. Mit dem hier vorgestellten Verfahren der nichtlinearen Mikroskopie und nachfolgender Bilddatenanalyse konnte erstmalig die Verteilung des zellulären Stärkegehalts in einer Chlamydomonas-Population während des Wachstums bzw. nach induziertem Stärkeabbau verfolgt werden. Im weiteren Verlauf wurde diese Methode auch auf Gefrierschnitte höherer Pflanzen, wie Arabidopsis thaliana, angewendet. Im Ergebnis wurde gezeigt, dass viele zelluläre Parameter, wie das Volumen, der zelluläre DNA- und Stärkegehalt bzw. die Anzahl der Stärkegranula durch eine Lognormalverteilung, mit wachstumsabhängiger Parametrisierung, beschrieben werden. Zelluläre Parameter, wie Stoffkonzentration und zelluläres Volumen, zeigen keine signifikanten Korrelationen zueinander, woraus geschlussfolgert werden muss, dass es ein hohes Maß an Heterogenität der zellulären Parameter innerhalb der synchronisierten Chlamydomonas-Populationen gibt. Diese Aussage gilt sowohl für die als homogenste Form geltenden Synchronkulturen von Chlamydomonas reinhardtii als auch für die gemessenen zellulären Parameter im intakten Zellverbund höherer Pflanzen. Dieses Ergebnis ist insbesondere für modelltheoretische Betrachtungen von Relevanz, die sich auf empirische Daten bzw. zelluläre Parameter stützen welche im Zellensemble gemessen wurden und somit nicht notwendigerweise den zellulären Status einer einzelnen Zelle repräsentieren. / Under appropriate growth conditions cells of algae cultures often show a greater productivity than it is observed for cells in higher plants. The cells of Chlamydomonas reinhardtii are relatively small. The cell volume during the vegetative cell cycle ranges only between 50-3500 µm³. Compared to higher plants the concentration of biomass in an algal suspension is small. Thus, 1 ml of a suspension with a standard concentration contains between 10E6 and 10E7 algal cells. Quantification of metabolites or macromolecules, which are used for modeling of cellular processes, is usually carried out in the cell ensemble. However, every single algal cell undergoes an individual development, which makes the identification of characteristic universal system parameters far more complicated. The aim of this work was to identify and quantify relevant biochemical parameters, which were measured in vivo and in vitro using optical methods. In the first part, a Pulse Amplitude Modulation (PAM) measuring station was introduced to measure the variable chlorophyll fluorescence of individual cells. A commercial microscope was combined with sensitive detection electronics and the application of suitable immobilization methods. This allowed the achievement of a signal-to-noise ratio which made it possible to measure the fluorescence signals of individual living Chlamydomonas cells. In particular, cell volume and the chlorophyll fluorescence parameter Fv/Fm as a measure of the photosynthetic apparatus efficiency and cell fitness were determined. A high degree of cellular heterogeneity of these parameters in different development stages of synchronized Chlamydomonas cells was determined. In the second part, the imaging laser scanning microscopy and subsequent image analysis for quantitative detection of the growth-dependent cellular parameters were applied. A commercial confocal microscope was extended by the possibility of non-linear microscopy. Hereby, a more localized excitation of the samples was possible. Hence, a higher spatial resolution and lower overall sample stressing were achieved. Besides signal generation through fluorescence excitation, second harmonic generation (SHG) on biophotonic structures, such as cellular starch, was applied. Based on distribution functions cellular parameters were determined by using theoretical model approaches. This allowed the characterization of parameters that were not directly accessible by measurement. The morphological information of the image data enabled the determination of cell volume and volumes of sub-cellular structures such as nuclei, extra-nuclear DNA, and starch granules. Furthermore, the number of sub-cellular structures within a cell or a cell compound was determined. Analysis of signal intensities constituted the basis of relative quantification of cellular components such as DNA and starch. For the first time, the method of non-linear microscopy and subsequent image analysis enabled the characterization of the cellular starch distribution of a Chlamydomonas population during cell growth, and after induced starch degradation, respectively. Subsequently, this method was additionally applied to frozen sections of higher plants like Arabidopsis thaliana. As a result it was shown that many cellular parameters like volume, cellular DNA content, and number of starch granules are described by means of a log-normal distribution with growth-related parameterization. Cellular parameters, such as concentration and cellular volume, showed no significant correlations among each other. Therefore, it was concluded that there is a high degree of cellular parameter heterogeneity within synchronized Chlamydomonas populations. This applies not only to synchronized cultures of Chlamydomonas reinhardtii, which are currently considered as the most homogeneous form, but also to measured cellular parameters of intact cell assemblies in higher plants. The result is especially important for model-theoretic considerations, which are based on empirical data, and cellular parameters obtained from cell ensembles, respectively.
6

Gene regulation and cis-regulatory element usage during sea urchin development

Brandenburg, Jonas Maurice 12 April 2023 (has links)
Die Grundlage der Entwicklung multizellulärer Lebewesen bildet die Herausbildung stabiler Zelllinien aus einer einzelnen Zygote. Die Expression spezifischer Kombinationen von Transkriptionsfaktoren ist von zentraler Bedeutung für diesen Prozess. Des Weiteren sind epigenetische Veränderungen des Genoms von Bedeutung, über deren Verhältnis zu Änderungen der Zell-Identitäten weniger bekannt ist. In dieser Arbeit nutze ich Daten aus scATAC-seq und scRNA-seq (mit metabolischer Markierung; scSLAM-seq) um die regulierenden Elemente im Seeigel zu charakterisieren – vom 4-Zell-Stadium, über die Aktivierung des zygotischen Genoms, bis hin zu den Strukturen der frühen Pluteus-Larve. Die Schicksale der einzelnen Zellen des Seeigels sind gut erforscht und ab der vierten Zellteilung etabliert (auch wenn einzelne Veränderungen bis zum 128-Zell Stadium induziert werden können), wonach die Keimblätter fest verankert sind. Plastizität innerhalb der Keimblätter ist mindestens bis zum Ende der Gastrulation möglich. Mithilfe dieser Daten, sowie den bekannten Ergebnissen der Erforschung der Zellschicksale vergangener Jahrzehnte, ist eine Diversifizierung von Zelltypen ersichtlich, die beim 128-Zell-Stadium mit der großen Welle der zygotischen Genomaktivierung (ZGA), einer Veränderung des Chromatinzustandes und dem Verlust der Entwicklungsplastizität einhergeht. Ein kleiner Teil von Genen, im Allgemeinen zelltypspezifische Transkriptionsfaktoren, wird schon vor der großen Welle der ZGA exprimiert, während sich gut offene Chromatinstrukturen auf wenige, distinkte regulatorische Sequenzen beschränken. Von diesem Zeitpunkt an, wird die Genexpression zelltypspezifisch, auch wenn viele Chromatinelemente weiterhin zelltypübergreifend offen sind. Insgesamt sind die Chromatinelemente recht kompakt und Elemente innerhalb der Gene häufig. Danach porträtiere ich noch die regulatorischen Veränderungen die mit der neuralen Entwicklung, sowie der Diversität von skelettbildenden Zellen im Seeigel einhergehen. Zuletzt identifiziere ich ~ 100 Gene, die in die Kalzifizierung des Skelettes des Seeigels involviert sind. / The emergence of multiple, stable cell lineages from a single-cell zygote is the essence of multicellular development. Combinatorial transcription factor expression is central to this process, as well as epigenetic changes whose relationship to changes in cell-identity are far less well understood. In this thesis, I use data from scATAC-seq and scRNA-seq (with metabolic labeling; scSLAM-seq) to characterize the regulatory landscapes of sea urchin development spanning from the 4-cell embryo through maternal zygotic transition (MZT), gastrulation, and the early pluteus larvae with its ecologically relevant structures (~72h). The early fate-map in sea urchins is well understood, providing an ideal model for this analysis; the basic fate-map is established by the fourth cleavage (though inducible lineage changes are possible up to the 128-cell stage) after which germ-layer identity is locked, though there remains considerable plasticity within lineages at least through gastrulation. Using these data, along-side classic research into cell fate maps in the early embryo, I find that cell-type diversification and a loss of plasticity at 128-cell stage corresponds to a major wave of zygotic genome activation (ZGA) and a clear resolution of the chromatin landscape in the sea urchin. However, a subset of genes, often cell-type-specific transcription factors, shows evidence of pre-MZT zygotic expression with early chromatin accessibility limited to few sites with distinct regulatory sequences. From this time, gene expression profiles become highly cell-type-specific, though many regulatory elements remain ubiquitously accessible, suggesting differential transcription factor occupancy at broadly accessible sites. Overall, the regulatory landscape is fairly compact with accessible intragenic elements being frequent. Subsequently, I profile the regulatory changes underlying neurodevelopment and the diversity of skeletogenic cells in the sea urchin. Finally, I also identify ~ 100 genes that are associated with calcification of the sea urchin skeleton.
7

Perturbation Analysis of Colorectal Cancer Cell Plasticity and Therapy Resistance at Single Cell Resolution

Lüthen, Mareen 21 November 2023 (has links)
Das normale Kolonepithel weist eine strenge Zellhierarchie auf, die aus bekannten Zelltypen besteht. Bei Darmkrebs (CRC) ist die Struktur weniger konserviert und nicht gut verstanden. Krebsauslösende Mutationen können die Prävalenz von Zelltypen verändern, und Zellen können sich auch dedifferenzieren, um einer gezielten Krebstherapie zu entgehen. Mein Ziel ist es, die Existenz heterogener Zelltypen in Organoiden zu bestätigen und Signalnetzwerke in CRC zu untersuchen, indem ich mit pharmakologischen Eingriffen spezifische Signalwege inhibiere, die Zellhierarchien im normalen Darm kontrollieren. Strategisch ausgewählte Medikamente wurden eingesetzt, um Knotenpunkte in verschiedenen Signalwegen zu hemmen, die für das Fortschreiten von Darmkrebs relevant sind. Ich untersuchte, ob die Inhibition von Signalwegen die Zusammensetzung der Zelltypen und den Differenzierungszustand verändert oder welche Kombinationen von Inhibitoren Plastizität oder Apoptose auslösen könnten. Von Patienten stammende Organoide mit verschiedenen onkogenen Treibermutationen wurden kultiviert und 48 Stunden lang mit einer Reihe von Inhibitoren und Inhibitorkombinationen behandelt. Diese Organoide wurden hauptsächlich auf zwei Ebenen untersucht: durch scRNA seq zur Ermittlung ihres Transkriptoms und durch CyTOF, das die Proteinhäufigkeit pro Zelle misst, um die Aktivität von Signaltransduktionskaskaden zu beurteilen. Beide Methoden wurden eingesetzt, um die Heterogenität des CRC zu quantifizieren. Ich konnte feststellen, dass sich Organoide mit denselben Treibermutationen ähnlicher verhalten und dass die molekularen Grundlagen der verschiedenen Linien Unterschiede im Therapieerfolg bedingen. Heterogene Transkriptome und Proteinexpression wurden durch einen Differenzierungsgradienten beeinflusst und konnten durch die Zugabe von Inhibitoren verändert werden. Die MAPK-Aktivität folgt diesem Differenzierungsgradienten und eine MAPK-Inhibition verringerte die Zellheterogenität und führte zu Plastizität. Darüber hinaus stellte ich fest, dass ein Teil der Zellen in Apoptose geht und die verbleibenden Zellen einen nicht-proliferativen Stammzellzustand annehmen, der es den Zellen ermöglicht, sich nach Aussetzung der Behandlung zu erholen. Es wurden in silico und in vitro Analysen durchgeführt, um neuartige Inhibitorkombinationen zur Maximierung der Apoptose in CRC-Organoiden zu finden, um die Entstehung therapieresistenter Subpopulationen weiter zu reduzieren. Wirksame Behandlungskombinationen bleiben jedoch zelllinienabhängig. Durch die getrennte Analyse des Zelldifferenzierungszustands und des Zellsignalisierungszustands habe ich dazu beigetragen zu verstehen, wie Tumorzellen einer gezielten Therapie durch nicht-genetische Resistenzmechanismen entgehen können. Die MAPK-Inhibition zur Verringerung der Zellheterogenität in Kombination mit anderen Inhibitoren könnte in Zukunft zur Optimierung des Therapieerfolgs eingesetzt werden. / Normal colon epithelium has a strict cell hierarchy consisting of well-known cell types. In colorectal cancer (CRC) the structure is less conserved and poorly understood. Cancer driver mutations may modulate the prevalence of cell types, and cells may also dedifferentiate to overcome targeted cancer therapy. My aim is to confirm the existence of heterogeneous cell types in organoids and investigate signaling networks in CRC by targeting specific signaling pathways with pharmacological intervention, which control cell hierarchies in the normal intestine. Strategically selected drugs were used to inhibit nodes in different signaling pathways relevant to the progression of CRC. I explored whether signaling inhibition changes cell type composition and differentiation state, or which inhibitor combinations might induce plasticity or apoptosis. Patient-derived organoids with different oncogenic diver mutations were cultured and treated with a panel of inhibitors and inhibitor combinations for 48 hours. These organoids were mainly examined on two levels: by scRNA seq to assess their transcriptome and by CyTOF, which measures protein abundance to assess the activity of pathways. Both methods were used to quantify CRC heterogeneity. I was able to see that organoids with the same driver mutations behave more similarly and that the molecular underpinnings of the different lines drive differences in therapy response. Heterogeneous transcriptomes and protein expression were affected by a differentiation gradient and could be altered by inhibitor addition. MAPK activity was graded along this differentiation gradient, and MAPK inhibition reduced cell heterogeneity and induced plasticity. Additionally, I found that a fraction of cells undergo apoptosis, and the remaining cells adopt a non-proliferative stem cell state, which allows cells to recover after suspension of treatment. \textit{In silico} and \textit{in vitro} analyses were performed to find novel inhibitor combinations to maximize apoptosis in CRC organoids to further reduce the emergence of therapy-resistant subpopulations. However, effective treatment combinations remain cell-line dependent. By separately analyzing cell differentiation state and cell signaling state I contributed to our understanding of how tumor cells can evade targeted therapy by non-genetic resistance mechanisms. Using MAPK inhibition to reduce cell heterogeneity in combination with other inhibitors may be used in the future to optimize therapy success.

Page generated in 0.0548 seconds