• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 39
  • 39
  • 13
  • 12
  • 12
  • 12
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Online Voltage Stability Prediction and Control Using Computational Intelligence Technique

Zhou, Qun Debbie 21 September 2010 (has links)
ABSTRACT Voltage instability has become a major concern in power systems. Many blackouts have been reported where the main cause is voltage instability. This thesis deals with two specific areas of voltage stability in on-line power system security assessments: small-disturbance (long-term) and large-disturbance (short-term) voltage stability assessment. For each category of voltage stability, both voltage stability analysis and controls are studied. The overall objective is to use the learning capabilities of computational intelligence technology to build up the comprehensive on-line power system security assessment and control strategy as well as to enhance the speed and efficiency of the process with minimal human intervention. The voltage stability problems are quantified by voltage stability indices which measure the system for the closeness of current operating point to voltage instability. The indices are different for small-disturbance and large-disturbance voltage stability assessment. Conventional approaches, such as continuation power flow or time-domain simulation, can be used to obtain voltage stability indices. However, these conventional approaches are limited by computation time that is significant for on-line computation. The Artificial Neural Network (ANN) approach is proposed to compute voltage stability indices as an alternative to the conventional approaches. The proposed ANN algorithm is used to estimate voltage stability indices under both normal and contingency operating conditions. The input variables of ANN are obtained in real-time by an on-line measurement system, i.e. Phasor Measurement Units (PMU). This thesis will propose a suboptimal approach for seeking the best locations for PMUs from a voltage stability viewpoint. The ANN-based method is not limited to compute voltage stability indices but can also be extended to determine suitable control actions. Load shedding is one of the most effective approaches against short-term voltage instability under large disturbances. The basic requirement of load shedding for recovering voltage stability is to seek an optimal solution for when, where, and how much load should be shed. Two simulation based approaches, particle swarm optimization (PSO) algorithm and sensitivity based algorithm, are proposed for load shedding to prevent voltage instability or collapse. Both approaches are based on time-domain simulation.
12

Power-Electronics-Enabled Transient Stabilization of Power Systems

Cvetkovic, Milos 01 December 2013 (has links)
Transient stability of electric energy grids is defined as the ability of the power system to remain in synchronism during large disturbances. If the grid is not equipped with controllers capable of transiently stabilizing system dynamics, large disturbances could cause protection to trigger disconnecting the equipment and leading further to cascading system-wide blackouts. Today’s practice of tuning controllers generally does not guarantee a transiently stable response because it does not use a model for representing system-wide dynamic interactions. To overcome this problem, in this thesis we propose a new systems modeling and control design for provable transient stabilization of power systems against a given set of disturbances. Of particular interest are fast power-electronically-controlled Flexible Alternating Current Transmission System (FACTS) devices which have become a new major option for achieving transient stabilization. The first major contribution of this thesis is a framework for modeling of general interconnected power systems for very fast transient stabilization using FACTS devices. We recognize that a dynamic model for transient stabilization of power systems has to capture fast electromagnetic dynamics of the transmission grid and FACTS, in addition to the commonly-modeled generator dynamics. To meet this need, a nonlinear dynamic model of general interconnected electric power systems is derived using time-varying phasors associated with states of all dynamic components. The second major contribution of this thesis is a two-level approach to modeling and control which exploits the unique network structure and enables preserving only relevant dynamics in the nonlinear system model. This approach is fundamentally based on separating: a) internal dynamics model for ensuring stable local response of components; b) system-level model in terms of interaction variables for ensuring stability of the system when the components are interconnected. The two levels can be controlled separately which minimizes the need for communication between controllers. Both distributed and cooperative ectropy-based controllers are proposed to control the interaction-level of system dynamics. Proof of concept simulations are presented to illustrate and compare the promising performance of the derived controllers. Some of the most advanced FACTS industry installations are modeled and further generalized using our approach.
13

Online Voltage Stability Prediction and Control Using Computational Intelligence Technique

Zhou, Qun Debbie 21 September 2010 (has links)
ABSTRACT Voltage instability has become a major concern in power systems. Many blackouts have been reported where the main cause is voltage instability. This thesis deals with two specific areas of voltage stability in on-line power system security assessments: small-disturbance (long-term) and large-disturbance (short-term) voltage stability assessment. For each category of voltage stability, both voltage stability analysis and controls are studied. The overall objective is to use the learning capabilities of computational intelligence technology to build up the comprehensive on-line power system security assessment and control strategy as well as to enhance the speed and efficiency of the process with minimal human intervention. The voltage stability problems are quantified by voltage stability indices which measure the system for the closeness of current operating point to voltage instability. The indices are different for small-disturbance and large-disturbance voltage stability assessment. Conventional approaches, such as continuation power flow or time-domain simulation, can be used to obtain voltage stability indices. However, these conventional approaches are limited by computation time that is significant for on-line computation. The Artificial Neural Network (ANN) approach is proposed to compute voltage stability indices as an alternative to the conventional approaches. The proposed ANN algorithm is used to estimate voltage stability indices under both normal and contingency operating conditions. The input variables of ANN are obtained in real-time by an on-line measurement system, i.e. Phasor Measurement Units (PMU). This thesis will propose a suboptimal approach for seeking the best locations for PMUs from a voltage stability viewpoint. The ANN-based method is not limited to compute voltage stability indices but can also be extended to determine suitable control actions. Load shedding is one of the most effective approaches against short-term voltage instability under large disturbances. The basic requirement of load shedding for recovering voltage stability is to seek an optimal solution for when, where, and how much load should be shed. Two simulation based approaches, particle swarm optimization (PSO) algorithm and sensitivity based algorithm, are proposed for load shedding to prevent voltage instability or collapse. Both approaches are based on time-domain simulation.
14

Nonlinear adaptive control in the design of power system stabilisers /

He, Fangpo. January 1991 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, 1992. / Includes bibliographical references (leaves 329-349).
15

Stability monitoring and analysis of online learning neural networks

Yerramalla, Sampath. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains xiii, 187 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 165-172).
16

Analysis of Passivity for Compliantly Controlled Robots

Kasal, Roshan Nivas January 2020 (has links)
No description available.
17

Conceptual Assessment of an Oblique Flying Wing Aircraft Including Control and Trim Characteristics

Plumley, Ryan W. 03 April 2008 (has links)
A method was developed to assist with the understanding of a unique configuration and investigate some of its stability and control attributes. Oblique wing aircraft concepts are a design option that is well understood, but has yet to be used in a production aircraft. Risk involved in choosing such a design can be averted through additional knowledge early in the concept evaluation phase. Analysis tools commonly used in early conceptual level analysis were evaluated for applicability to a non-standard aircraft design such as an oblique flying wing. Many tools used in early analyses make assumptions that are incompatible with the slewed wing configuration of the vehicle. Using a simplified set of tools, an investigation of a unique configuration was done as well as showing that the aircraft could be trimmed at given conditions. Wave drag was investigated to determine benefits for an oblique flying wing. This form of drag was reduced by the distribution of volume afforded by the slewing of the aircraft's wing. Once a reasonable concept was developed, aerodynamic conditions were investigated for static stability of the aircraft. Longitudinal and lateral trim were established simultaneously due to its asymmetric nature. / Master of Science
18

Flight Dynamic Constraints in Conceptual Aircraft Multidisciplinary Analysis and Design Optimization

Morris, Craig C. 27 February 2014 (has links)
This work details the development of a stability and control module for implementation into a Multidisciplinary Design Optimization (MDO) framework for the conceptual design of conventional and advanced aircraft. A novel approach, called the Variance Constrained Flying Qualities (VCFQ) approach, is developed to include closed-loop dynamic performance metrics in the design optimization process. The VCFQ approach overcomes the limitations of previous methods in the literature, which only functioned for fully decoupled systems with single inputs to the system. Translation of the modal parameter based flying qualities requirements into state variance upper bounds allows for multiple-input control laws which can guarantee upper bounds on closed-loop performance metrics of the aircraft states and actuators to be rapidly synthesized. A linear matrix inequality (LMI) problem formulation provides a general and scalable numerical technique for computing the feedback control laws using convex optimization tools. The VCFQ approach is exercised in a design optimization study of a relaxed static stability transonic transport aircraft, wherein the empennage assembly is optimized subject to both static constraints and closed-loop dynamic constraints. Under the relaxed static stability assumption, application of the VCFQ approach resulted in a 36% reduction in horizontal tail area and a 32% reduction in vertical tail area as compared to the baseline configuration, which netted a weight savings of approximately 5,200 lbs., a 12% reduction in cruise trimmed drag, and a static margin which was marginally stable or unstable throughout the flight envelope. State variance based dynamic performance constraints offer the ability to analyze large, highly coupled systems, and the linear matrix inequality problem formulation can be extended to include higher-order closed-loop design objectives within the MDO. Recommendations for further development and extensions of this approach are presented at the end. / This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-09-2-3938. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government. / Ph. D.
19

Probabilistic matching systems : stability, fluid and diffusion approximations and optimal control

Chen, Hanyi January 2015 (has links)
In this work we introduce a novel queueing model with two classes of users in which, instead of accessing a resource, users wait in the system to match with a candidate from the other class. The users are selective and the matchings occur probabilistically. This new model is useful for analysing the traffic in web portals that match people who provide a service with people who demand the same service, e.g. employment portals, matrimonial and dating sites and rental portals. We first provide a Markov chain model for these systems and derive the probability distribution of the number of matches up to some finite time given the number of arrivals. We then prove that if no control mechanism is employed these systems are unstable for any set of parameters. We suggest four different classes of control policies to assure stability and conduct analysis on performance measures under the control policies. Contrary to the intuition that the rejection rate should decrease as the users become more likely to be matched, we show that for certain control policies the rejection rate is insensitive to the matching probability. Even more surprisingly, we show that for reasonable policies the rejection rate may be an increasing function of the matching probability. We also prove insensitivity results related to the average queue lengths and waiting times. Further, to gain more insight into the behaviour of probabilistic matching systems, we propose approximation methods based on fluid and diffusion limits using different scalings. We analyse the basic properties of these approximations and show that some performance measures are insensitive to the matching probability agreeing with the results found by the exact analysis. Finally we study the optimal control and revenue management for the systems with the objective of profit maximization. We formulate mathematical models for both unobservable and observable systems. For an unobservable system we suggest a deterministic optimal control, while for an observable system we develop an optimal myopic state dependent pricing.
20

T-singularidade: dinâmica, estabilidade e teoria de controle / T-singularity: dynamics, stability and control theory

Cespedes, Oscar Alexander Ramírez 22 March 2013 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-18T14:41:50Z No. of bitstreams: 2 Dissertacao Oscar Alexander Ramirez Cespedes.pdf: 2846357 bytes, checksum: 734d0022f388a5e80f1343acade03c64 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-18T15:36:44Z (GMT) No. of bitstreams: 2 Dissertacao Oscar Alexander Ramirez Cespedes.pdf: 2846357 bytes, checksum: 734d0022f388a5e80f1343acade03c64 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-18T15:36:44Z (GMT). No. of bitstreams: 2 Dissertacao Oscar Alexander Ramirez Cespedes.pdf: 2846357 bytes, checksum: 734d0022f388a5e80f1343acade03c64 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-22 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Consider a nonsmooth vector fields in R3 defined by parts on a smooth manifold of dimension one, such that it is tangent to both sides simultaneously, in fold points, visibles or invisibles. In this paper we study a local dynamics of the singularity type two-fold invisible-invisible known as Teixeira singularity, revealing new scenes of bifurcations and the nonlinear effects around the bifurcation already known, determining conditions for the existence of invariant sets (limit cycles) and the possible existence of a set with a nondeterministic chaos. Furthermore, we discuss the occurrence of this singularity in switched feedback control systems and some numerical simulations are presented. / Quando um campo vetorial não suave é definido por partes, sobre uma variedade regular de codimensão um, esse pode ser simultaneamente tangente a ambos os lados, em pontos de dobra, visíveis ou invisíveis. Neste trabalho é estudada a dinâmica local da singularidade; tipo dobra-dobra invisível-invisível conhecida como Singularidade Teixeira, revelando novos cenários de bifurcações e os efeitos não lineares em torno da bifurcação já conhecida, determinando condições para a existência de conjuntos invariantes (ciclos limite), e a possível existência de um conjunto com uma forma não-determinística do caos. Além disso, discute-se a ocorrência de tal singularidade em sistemas de controle com retroalimentação comutante. Algumas simulações numéricas são apresentadas.

Page generated in 0.0774 seconds