• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of miniaturized microstrip antenna efficiency enhancement

Raju, Robin 31 July 2015 (has links)
Radiation Efficiency improvement of miniaturized microstrip antenna is studied in this thesis. It is shown that, the loss reduction in miniaturized Microstrip Antenna can be achieved through two possible ways. The first is by modifying the materials used for building the antenna, and the second method is by increasing the radiation conductance of the antenna. Material modification at nano/micro scale by replacing conductors with Metallo-Dielectric one dimensional medium for applications in loss reduction is investigated first. It is shown by the Transfer Matrix Method and using simulations that, for a one dimensional medium replacing very thin conductors (less than skin depth) by laminated multilayered conductors reduce losses. However, the improvement does not exceed the case of single conductor which is a few times thicker than skin depth. Secondly, the efficiency improvement of a small H-Shaped patch antenna by using closely coupled stacked parasitic resonators is studied. It is shown that significant improvement in efficiency can be achieved with minimal changes in the foot print, radiation pattern and cross polarization levels of the antenna. The effect of the overall thickness and superstrate dielectric constant on the efficiency improvement is studied parametrically. It is shown that by using 5 radiating resonators and appropriate choice of inter-conductor dielectric constant, for a small increase in thickness of 0.127mm (5mil), the radiation efficiency can be increased from 2.34% to 6.3%. This efficiency improvement can be made very significant from 2.4% to 33%, by increasing the height to 1.27mm (50mil). These translate to a gain improvement of 4dB and 13dB, respectively. This technique is also demonstrated experimentally in H-Shaped antennas with two different levels of miniaturizations. / October 2015
2

X Band Two Layer Printed Reflectarray With Shaped Beam

Ucuncu, Gokhan 01 October 2011 (has links) (PDF)
X BAND TWO LAYER PRINTED REFLECTARRAY WITH SHAPED BEAM &Uuml / &ccedil / &uuml / nc&uuml / , G&ouml / khan MSc., Department of Electrical and Electronics Engineering Supervisor: Prof. Dr. H. &Ouml / zlem Aydin &Ccedil / ivi October, 2011, 110 pages X-band cosecant square shaped beam microstrip reflectarray is designed, fabricated and measured. Unit element of the reflectarray is in stacked patch configuration. With the aim of designing shaped beam pattern, phase-only synthesis method based on genetic algorithm is used. Phases of reflected electric field from antenna elements are adjusted by changing the dimensions of the patches. Unit cell simulations are performed using periodic boundary conditions and assuming infinite array approach to obtain reflection phase curves versus patch size. Then full reflectarray surface and its feed are designed and fabricated. Radiation patterns are measured in spherical near field range and results are compared with simulations. It is shown that the antenna is capable to operate in a band of 8.6 - 9.7 GHz.
3

A Modular Approach to Design and Implementation of an Active GNSS Antenna

Hecktor, Ulrik January 2022 (has links)
This master’s thesis describes the design, implementation and testing of an active antenna intended for use with global navigation satellite systems. The active antenna is composed of two major parts, a dual-band circular patch antenna and a dual-band low-noise amplifier. To streamline the design process, a modular solution was adopted. This enabled the functionality of every part in the signal path to be verified before the final active antenna was designed. A practical method to develop dual-band stacked circular patch antennas, along with a systematic way to tune the resonant frequencies and impedance of the antenna, is also presented. Testing of the antenna in realistic scenarios shows that the active antenna performs as expected and predicted by simulations. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
4

Dual Band Microstrip Patch Antenna Structures

Okuducu, Yusuf 01 December 2005 (has links) (PDF)
Wideband and dual band stacked microstrip patch antennas are investigated for the new wideband and dual band applications in the area of telecommunications. In this thesis, aperture-coupled stacked patch antennas are used to increase the bandwidth of the microstrip patch antenna. By this technique, antennas with 51% bandwidth at 6.1 GHz and 43% bandwidth at 8 GHz satisfying S11&lt / -15 dB are designed, manufactured and measured. A dual-band aperture coupled stacked microstrip patch antenna operating at 1.8 GHz with 3.8% bandwidth and at 2.4 GHz with 1.6% bandwidth is designed, produced and measured for mobile phone and WLAN applications. In addition, an aperture coupled stacked microstrip patch antenna which operates at PCS frequencies in 1.7-1.95 GHz band is designed. Dual and circularly polarized stacked aperture coupled microstrip patch antennas are also investigated. A triple band dual polarized aperture coupled stacked microstrip patch antenna is designed to operate at 900 MHz, at 1.21 GHZ and at 2.15 GHz. Mutual coupling between aperture coupled stacked microstrip patch antennas are examined and compared with the coupling of aperture coupled microstrip patch antennas
5

Anténní řada pro určování pozice letadel / Antenna array to determine positions of airplanes

Zelenka, Pavel January 2019 (has links)
The project is aimed to design an antenna array for an aircraft positioning system at an airport. The system operates at frequencies 1030 MHz and 1090 MHz. The antenna is also used by the DME/TACAN system operating in frequency range from 1025 MHz to 1150 MHz. The required impedance bandwidth of the antenna array is 125 MHz, i.ee from 1025 MHz to 1150 MHz. The theoretical part of the thesis analyses properties of different patch antennas and discusses the possibility of extending the impedance bandwidth. The practical part is focused on the development of the numerical model of the broadband stacked patch antennas. In addition, properties of the 3-element and 4-element antenna array are compared. At the end, results of the thesis are summarized.

Page generated in 0.035 seconds