• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 51
  • 37
  • 4
  • Tagged with
  • 144
  • 75
  • 45
  • 34
  • 34
  • 25
  • 25
  • 22
  • 19
  • 17
  • 15
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gezielte genetische Manipulation durch Lambda-Integrasen in embryonalen Stammzellen der Maus und in anderen Säugetierzellen

Christ, Nicole. January 2002 (has links) (PDF)
Köln, Universiẗat, Diss., 2002.
2

Erzeugung von genetisch veränderten Mäusen Versuche zur transgenen Rettung der wobbler Mutation der Maus /

Schmidt, Volker Christopher. January 2002 (has links) (PDF)
Bielefeld, Universiẗat, Diss., 2002.
3

Forschung an embryonalen Stammzellen zwischen biomedizinischer Ambition und ethischer Reflexion

Badura-Lotter, Gisela. January 2005 (has links)
Univ., Diss., 2004 u.d.T: Badura-Lotter, Gisela: Forschung an humanen embryonalen Stammzellen--Tübingen.
4

Neural Differentiation Potential of Murine Androgenetic Embryonic Stem Cells / Das Neurale Differenzierungspotential Muriner Androgenetischer Embryonaler Stammzellen

Dinger, Timo Christoph January 2008 (has links) (PDF)
Uniparental zygotes with two genomes from the same sex can be established from fertilised oocytes after pronuclear exchange. They contain two maternal (gynogenetic; GG) or paternal (androgenetic; AG) pronuclei and are not competent to develop into viable offspring but they can form blastocysts from which embryonic stem cells (ES cells) can be derived. The developmental potential of uniparental ES cells is not fully investigated. The restricted developmental potential of uniparental cells is cell-intrinsic and probably reflects the different roles maternal and paternal genomes play during development. Following blastocyst injection, both GG and AG ES cells show biased and parent-of-origin-specific chimaera formation. While the in vitro and in vivo neural differentiation potential of GG ES cells is well characterised the neural developmental potential of AG ES cells is less clear. In an earlier study the group of K. John McLaughlin reported that AG and GG ES cell-derived hematopoietic stem cells conveyed long-term, multi-lineage hematopoietic engraftment with no associated pathologies (Eckardt et al., 2007). The aim of this study was to investigate the potential of AG uniparental murine ES cells to differentiate in vitro and in vivo into neural progenitor / stem cells and further into neurons, astro- and oligodendroglia in comparison to GG and biparental (normal fertilised; N) ES cells. Uniparental and biparental ES cells were obtained from K. John McLaughlin’s group and a cell culture system was established to expand uniparental (AG, GG) and biparental N ES cells on murine embryonic fibroblasts (MEF). A multistep-protocol was used to differentiate ES cells towards pan-neural progenitor cells and neuronal and glial cell types (Brüstle et al., 1997). The ability of terminal neural differentiation in vitro was analysed by fluorescence microscopy using neuronal and glial lineage markers. In parallel, eGFP+ AG or N ES cells were injected into blastocysts prior to their transfer into foster mothers. At E12.5 and E14.5, embryos were isolated, forebrains were dissected and by means of fluorescence activated cell sorting (FACS) eGFP+ donor cells were isolated from chimeric brains. Both eGFP+ donor and corresponding eGFP- blastocyst-derived brain cells were expanded and analyses of differentiation potential and self-renewal capacity were performed. Also, cryosections of E12.5 chimeric brains were analysed for donor contribution to the neuronal lineage by immunofluorescence microscopy. Here it is described that following in vitro differentiation, AG pan-neural progenitor cells have similar abilities to differentiate into neuronal and glial lineages as GG and N pan-neural progenitor cells. In cryosections of E12.5 chimeric brains no differences in brain engraftment and formation of immature neuronal cells between uniparental AG and N donor cells were detected. AG and N ES cell-derived cells isolated from chimeric foetal brains by FACS exhibited similar neurosphere initiating cell frequencies and neural multi-lineage differentiation potential. Therefore, the data of this study suggest that the previously described differences in the in vivo engraftment pattern of uniparental inner cell mass (ICM) cells in foetal brains (Keverne et al., 1996) are not primarily due to limitations in the proliferation or differentiation properties of uniparental neural progenitor cells. The results presented here indicate that AG ES cell-derived neural progenitor / stem cells did not differ from N neural progenitor / stem cells in their self-renewal and their neural multi-lineage differentiation potential. Also AG ES cell-derived cells contributed to developing brains at early foetal developmental stages showing a widespread and balanced distribution in chimeric brains. AG brain cells form neurospheres with self-renewal and neural differentiation capacity similar to N ES cell-derived brain cells. Thus, the data of this study together indicate that the neural developmental potential in vivo and in vitro of AG and N ES cells does not differ. / Uniparentale Zygoten mit zwei Allel-Sätzen des gleichen Geschlechtes entstehen aus befruchteten Eizellen nach dem Austauschen von einem der Pronuclei, so dass sie entweder zwei maternale Pronuclei (gynogenetisch; GG) oder zwei paternale Pronuclei (androgenetisch, AG) enthalten. Diese uniparentalen Zygoten sind nicht in der Lage, sich zu lebensfähigen Organismen zu entwickeln, aber sie erreichen das Entwicklungsstadium der Blastozyste, aus denen uniparentale embryonale Stammzellen (ES Zellen) gewonnen werden können. Das Entwicklungspotential uniparentaler ES Zellen ist bisher nicht vollständig verstanden. Das begrenzte Entwicklungspotential uniparentaler Zellen ist zell-intrinsisch und spiegelt die möglichen unterschiedlichen Rollen wieder, die maternales und paternales Genom während der Entwicklung eines Organismus spielen. Nach der Injektion in wildtypische Blastozysten zeigen sowohl AG- als auch GG-Zellen unausgewogene und spezifisch für den parentalen Ursprung der injizierten Zellen typische Entwicklungen in den chimären Embryonen. Während das neurale Entwicklungspotential von GG ES Zellen gut charakterisiert ist, ist dies für AG ES Zellen weit weniger untersucht. In einer früheren Studie zeigte die Arbeitsgruppe von K. John McLaughlin, dass AG- und GG-Zellen langzeitrepopulierende hämatopoetische Zellen mit der Fähigkeit zur Multiliniendifferenzierung sind, deren Transplantation zu keinen pathologischen Veränderungen im hämatopoetischen System führten (Eckardt et al., 2007). Das Ziel dieser Arbeit war es, das Potential muriner AG ES Zellen zur Differenzierung in neurale Stamm- und Vorläuferzellen und weiter in neurale, astro- und oligodendrogliale Zellen im Vergleich zu GG und biparentalen (normal befruchteten; N) ES Zellen in vivo und in vitro zu untersuchen. Für uniparentale und biparentale ES Zellen, die von der Arbeitsgruppe von K. John McLaughlin zur Verfügung gestellt wurden, wurde ein Zellkultursystem etabliert, um uniparentale (AG, GG) und N ES Zellen auf murinen embryonalen Fibroblasten (MEFs) zu kultivieren. Ein mehrstufiges Differenzierungsprotokoll wurde angewandt, um aus ES Zellen pan-neurale Vorläuferzellen und neuronale und gliale Zelltypen zu generieren (Brüstle et al., 1997). Die Fähigkeit zur terminalen neuronalen Differenzierung wurde mit Fluoreszenzmikroskopie unter der Verwendung von linienspezifischen neuronalen und glialen Markermolekülen analysiert. Parallel dazu wurden eGFP+ uniparentale AG oder biparentale N ES Zellen in Blastozysten injiziert, die in Ammentiere transferiert wurden. An den Tagen E12.5 und E14.5 wurden die Embryonen isoliert, die fötalen Vorderhirne wurden präpariert, und aus den daraus resultierenden Einzelzellsuspensionen wurden durch fluoreszenzaktivierte Zellsortierung aus AG ES Zellen entstandene GFP+ Zellen isoliert. Sowohl von AG ES Zellen abstammende eGFP+ Zellen als auch von den korrespondierenden, von den Blastozysten abstammende, eGFP- Zellpopulationen wurden als Kulturen expandiert. Analysen des neuronalen Differenzierungspotenzials und der Selbsterneuerungsfähigkeit wurden durchgeführt. Außerdem wurde in Kryosektionen von E12.5 chimären Gehirnen die Verteilung der von AG ES Zellen abstammenden eGFP+ Zellen durch Immunfluoreszenzmikroskopie untersucht. AG pan-neurale Vorläuferzellen zeigten in der in vitro Differenzierung ähnliche Fähigkeiten zur Differenzierung in neurale und gliale Zelllinien wie GG und N pan-neurale Vorläuferzellen. In Kryosektionen von E12.5 chimären Gehirnen wurden keine signifikanten Unterschiede in der Besiedlung von Gehirngeweben und der Bildung unreifer neuronaler Zellen zwischen AG und N Zellen festgestellt. Die von AG und N ES Zellen abstammenden Zellen, die durch fluoreszenzaktivierte Zellsortierung aus den chimären fötalen Gehirnen isoliert wurden, zeigten gleiche Frequenzen von Neurosphären initiierenden Zellen und ein gleiches neurales Multilinien-Differenzierungspotenzial. Zusammenfassend deuten die Daten in der hier vorliegenden Studie darauf hin, dass die Unterschiede im in vivo Besiedlungsmuster fötaler chimärer Gehirne durch uniparentale Zellen (Keverne et al., 1996) nicht auf Limitierungen in den Proliferations- oder Differenzierungseigenschaften von uniparentalen neuralen Vorläuferzellen zurückzuführen sind. Die Ergebnisse zeigen vielmehr, dass neurale Vorläufer- / Stammzellen, die von AG ES Zellen abstammen, sich nicht in ihrem Selbsterneuerungs- und Multilinien-Differenzierungspotenzial von N Vorläufer- / Stammzellen unterscheiden. Ebenso zeigen AG ES Zellen nach Blastocysten-Injektion in frühen fötalen Entwicklungsstufen eine ausgewogene Verteilung im gesamten chimären Gehirn. AG Gehirnzellen bilden Neurosphären mit dem gleichen Selbsterneuerungs- und neuralen Differenzierungspotenzial wie N Gehirnzellen. Zusammen genommen zeigen die Daten dieser Studie, dass sich die Fähigkeit von AG ES Zellen zur frühen neuralen Entwicklung in vitro und in vivo nicht von N ES Zellen unterscheiden.
5

Einfluss der Eisenoxidpartikel-Markierung auf das Verhalten von humanen mesenchymalen Stammzellen (MSZ) auf Polylaktid-Trägern / Effects of iron oxide nanoparticle labeling on human mesenchymal stem cells (MSC) seeded on polylactic acid scaffolds

Gerken, Andreas January 2013 (has links) (PDF)
Die vorliegende Inaugural-Dissertation beschäftigt sich mit dem Einfluss der Eisenoxidpartikel-Markierung (VSOP) von Mesenchymalen Stammzellen (MSZ) auf Polylaktid-Trägern (OPLA) im Hinblick auf Morphologie, Vitalität und Differenzierung über einen Zeitraum von 28 Tagen. Histologisch war der intrazelluläre Eisen-III Nachweis mit Hilfe der Berliner Blau Färbung als Zeichen der gelungenen Eisenoxid-Markierung in der VSOP-Gruppe bis zum 28. Tag positiv. Morphologisch zeigten sich im Groben keine Unterschiede zwischen VSOP- und Kontrollgruppe bei ähnlicher Besiedelungsstruktur der Scaffolds mit Betonung der Randbereiche in beiden Gruppen. Die morphologische Struktur stand in Korrelation mit den Ergebnissen der DNA-Konzentrationsbestimmung in den Konstrukten. Es zeigte sich in beiden Gruppen ein vergleichbarer DNA-Ansteig am Tag 3 nach Besiedelung und ein Abfall der DNA-Konzentration ab Tag 7 in der Kontrollgruppe, bzw. Tag 14 in der VSOP-Gruppe auf ein ähnliches Niveau in beiden Gruppen, welches ungefähr der DNA-Konzentration vor Besiedelung entsprach. Diese Beobachtungen zeigen am ehesten, dass die Vitalität der Zellen in den Konstrukten nicht VSOP-bedingt eingeschränkt ist, sondern von den äußeren Kulturbedingungen abhängig ist. In der RT-PCR Analyse zeigte sich ein ähnliches Expressionsmuster fast aller untersuchter osteogener Marker in beiden Gruppen. Als VSOP-induzierten Effekt könnte lediglich die vermehrte Expression von BSP in der VSOP-Gruppe verstanden werden bei eingeschränkter Vergleichbarkeit der Proben aufgrund der inhomogenen Expression des Housekeeping-Gens. Erstaunlicherweise wurden alle osteogenen Marker in beiden Gruppen exprimiert, obwohl die Zellen nicht in osteogenem Induktionsmedium kultiviert wurden. Zusammenfassend lässt sich sagen, dass die VSOP-Markierung von MSZ, wie bereits in anderen Studien gezeigt, auch in der dreidimensionalen Kultur auf OPLA-Scaffolds eine sichere und wenig zellbeeinflussende Methode ist, die damit zum Nachweis der Stammzellen nach Applikation in Form von Tissue Engineering Konstrukten dienen kann. / Effects of iron oxide nanoparticle labeling on human mesenchymal stem cells (MSC) seeded on polylactic acid scaffolds
6

Generation of cardiomyocytes from vessel wall-resident stem cells / Erzeugung von Kardiomyozyten aus Gefäßwand-residenten Stammzellen

Mekala, SubbaRao January 2019 (has links) (PDF)
Myocardial infarction (MI) is a major cause of health problems and is among the leading deadly ending diseases. Accordingly, regenerating functional myocardial tissue and/or cardiac repair by stem cells is one of the most desired aims worldwide. Indeed, the human heart serves as an ideal target for regenerative intervention, because the capacity of the adult myocardium to restore itself after injury or infarct is limited. Thus, identifying new sources of tissue resident adult stem or progenitor cells with cardiovascular potential would help to establish more sophisticated therapies in order to either prevent cardiac failure or to achieve a functional repair. Ongoing research worldwide in this field is focusing on a) induced pluripotent stem (iPS) cells, b) embryonic stem (ES) cells and c) adult stem cells (e. g. mesenchymal stem cells) as well as cardiac fibroblasts or myofibroblasts. However, thus far, these efforts did not result in therapeutic strategies that were transferable into the clinical management of MI and heart failure. Hence, identifying endogenous and more cardiac-related sources of stem cells capable of differentiating into mature cardiomyocytes would open promising new therapeutic opportunities. The working hypothesis of this thesis is that the vascular wall serves as a niche for cardiogenic stem cells. In recent years, various groups have identified different types of progenitors or mesenchymal stem cell-like cells in the adventitia and sub-endothelial zone of the adult vessel wall, the so called vessel wall-resident stem cells (VW-SCs). Considering the fact that heart muscle tissue contains blood vessels in very high density, the physiological relevance of VW-SCs for the myocardium can as yet only be assumed. The aim of the present work is to study whether a subset of VW-SCs might have the capacity to differentiate into cardiomyocyte-like cells. This assumption was challenged using adult mouse aorta-derived cells cultivated in different media and treated with selected factors. The presented results reveal the generation of spontaneously beating cardiomyocyte-like cells using specific media conditions without any genetic manipulation. The cells reproducibly started beating at culture days 8-10. Further analyses revealed that in contrast to several publications reporting the Sca-1+ cells as cardiac progenitors the Sca-1- fraction of aortic wall-derived VW-SCs reproducibly delivered beating cells in culture. Similar to mature cardiomyocytes the beating cells developed sarcomeric structures indicated by the typical cross striated staining pattern upon immunofluorescence analysis detecting α-sarcomeric actinin (α-SRA) and electron microscopic analysis. These analyses also showed the formation of sarcoplasmic reticulum which serves as calcium store. Correspondingly, the aortic wall-derived beating cardiomyocyte-like cells (Ao-bCMs) exhibited calcium oscillations. This differentiation seems to be dependent on an inflammatory microenvironment since depletion of VW-SC-derived macrophages by treatment with clodronate liposomes in vitro stopped the generation of Ao bCMs. These locally generated F4/80+ macrophages exhibit high levels of VEGF (vascular endothelial growth factor). To a great majority, VW-SCs were found to be positive for VEGFR-2 and blocking this receptor also stopped the generation VW-SC-derived beating cells in vitro. Furthermore, the treatment of aortic wall-derived cells with the ß-receptor agonist isoproterenol or the antagonist propranolol resulted in a significant increase or decrease of beating frequency. Finally, fluorescently labeled aortic wall-derived cells were implanted into the developing chick embryo heart field where they became positive for α-SRA two days after implantation. The current data strongly suggest that VW-SCs resident in the vascular adventitia deliver both progenitors for an inflammatory microenvironment and beating cells. The present study identifies that the Sca-1- rather than Sca-1+ fraction of mouse aortic wall-derived cells harbors VW-SCs differentiating into cardiomyocyte-like cells and reveals an essential role of VW-SCs-derived inflammatory macrophages and VEGF-signaling in this process. Furthermore, this study demonstrates the cardiogenic capacity of aortic VW-SCs in vivo using a chimeric chick embryonic model. / Der Myokardinfarkt (MI) ist einer der Hauptgründe für gesundheitliche Probleme und zählt zu einer der am häufigsten tödlich verlaufenden Krankheiten weltweit. Daher ist es nicht verwunderlich, dass die Regeneration von funktionellem Myokardgewebe und/oder die kardiale Reparatur durch Stammzellen eines der weltweit am meisten angestrebten Ziele darstellt. Das adulte menschliche Herz stellt aufgrund seiner äußerst eingeschränkten endogenen Regenerationskapazität, die bei weitem nicht ausreicht, das geschädigte Gewebe zu erneuern, ein ideales Zielorgan für regenerative Therapieverfahren dar. Folglich könnte die Identifizierung neuer Quellen adulter Stamm- oder Vorläuferzellen mit kardiovaskulärem Differenzierungspotential dabei helfen, verfeinerte Therapien zu entwickeln, um entweder kardiale Fehlfunktionen zu verhindern oder eine deutlich verbesserte myokardiale Reparatur zu erreichen. Die aktuelle weltweite Forschung auf diesem Gebiet fokussiert sich auf: a) induzierte pluripotente Stammzellen (iPS), b) embryonale Stammzellen (ES) und c) adulte Stammzellen, wie z. B. mesenchymale Stammzellen, kardiale Fibroblasten und Mesangioblasten sowie Myofibroblasten. Bisher haben jedoch alle Bemühungen noch zu keinem Durchbruch geführt, so dass die teilweise vielversprechenden experimentellen Ergebnisse nicht in die klinische Therapie des MI und der kardialen Defekte mittels Stammzellen transferiert werden können. Abgesehen davon, ob und wie stark so ein endogenes herzeigenes Potential wäre, würde die Identifizierung neuer endogener Stammzellen mit kardiogenem Potential, die genaue Charakterisierung ihrer Nischen und der Mechanismen ihrer Differenzierung einen Meilenstein in der kardioregenerativen Stammzelltherapie darstellen. Die Arbeitshypothese der hier vorgelegten Dissertation besagt, dass die Gefäßwand als Nische solcher Zellen dienen könnte. Innerhalb der letzten Jahre konnte die Adventitia und die subendotheliale Zone der adulten Gefäßwand als Nische für unterschiedliche Typen von Vorläuferzellen und multipotenten Stammzellen, die sogenannten Gefäßwand-residenten Stammzellen (VW-SCs) identifiziert werden. In Anbetracht der Tatsache, dass die Blutgefäße aufgrund ihrer hohen Dichte im Herzen eine essentielle stromale Komponente des Herzgewebes darstellen, kann die mögliche klinische Relevanz von VW-SCs für das Myokardium im Moment nur erahnt werden. Ausgehend von der Annahme, dass eine Subpopulation dieser VW-SCs die Fähigkeit besitzt, sich in Kardiomyozyten-ähnliche Zellen zu differenzieren, sollte im Rahmen dieser Dissertationsarbeit das myokardiale Potential der Gefäßwand-residenten Stammzellen aus der Aorta adulter Mäuse studiert werden, indem die Zellen unter unterschiedlichen definierten Bedingungen kultiviert und dann sowohl morphologisch als auch funktionell charakterisiert werden. Erstaunlicherweise zeigten die ersten Ergebnisse die Generierung spontan schlagender Kardiomyozyten-ähnlicher Zellen, nur durch Verwendung eines speziellen Nährmediums und ohne jegliche genetische Manipulation. Die im Rahmen dieser Arbeit durchgeführten Analysen belegen zudem, dass die Kardiomyozyten-ähnlichen Zellen reproduzierbar nach ca. 9-11 Tagen in der Kultur anfangen, spontan zu schlagen. In immunzytochemischen Analysen zeigten die schlagenden Zellen ein quergestreiftes Färbemuster für α sarkomeres Actinin. Passend dazu wiesen diese spontan schlagenden Zellen, wie reife Kardiomyozyten, Sarkomerstrukturen mit Komponenten des sarkoplasmatischen Retikulums in elektronenmikroskopischen Analysen auf. Sie zeigten dementsprechend eine mit dem spontanen Schlag assoziierte Kalzium-Oszillation. Erstaunlicherweise zeigten die hier vorgelegten Befunde erstmalig, dass es nicht die Sca-1+ (stem cell antigen-1) Zellen waren, denen seit Jahren eine kardiomyozytäre Kapazität zugeschrieben wird, sondern es waren die Sca-1- Zellen der Mausaorta, die sich zu den spontan schlagenden Zellen differenzierten. Des Weiteren scheint diese Differenzierung von einer endogen generierten inflammatorischen Mikroumgebung abhängig zu sein. Die hier vorgelegten Ergebnisse legen daher den Schluss nahe, dass die VW-SCs in der vaskulären Adventitia sowohl die inflammatorische Mikroumgebung als auch die spontan schlagenden Kardiomyozyten-ähnlichen Zellen bereitstellten. So entstanden in der Kultur aortaler Zellen unter anderem auch Makrophagen, die hohe Mengen des Gefäßwachstumsfaktors VEGF (Vascular Endothelial Growth Factor) aufweisen. Wurden die Makrophagen in der Zellkultur durch Zugabe von Clodtronat-Liposomen depletiert, so wurde damit auch die Generierung spontan schlagender Zellen aus den aortalen VW-SCs unterbunden. Um zu testen, ob und inwieweit dieser Einfluss der Makrophagen auf die Entstehung spontan schlagender Zellen aus den VW-SCs auf den VEGF zurückzuführen ist, wurden kultivierte Zellen der Mausaorta mit dem VEGF-Rezeptor-2-Blocker (E7080) behandelt. Auch diese Behandlung resultierte wie bei der Depletion von Makrophagen darin, dass keine spontan schlagenden Zellen entstanden. Um die von VW-SCs generierten spontan schlagenden Zellen funktionell zu charakterisieren, wurden die kultivierten Zellen der Mausaorta mit Isoproterenol (ß-Sympathomimetikum) und Propranolol (ß-Blocker) behandelt. Eine signifikante Steigerung der Schlagfrequenz unter Isoproterenol und eine Reduzierung bei Zugabe von Propranolol unterstreichen ebenfalls die Kardiomyozyten-ähnliche Eigenschaft der spontan schlagenden Zellen. Schließlich wurden die aus der Mausaorta isolierten Zellen Fluoreszenz-markiert und dann in das kardiale Feld des sich entwickelnden Hühnerembryos (am fünften Tag der Entwicklung) implantiert. Zwei Tage später wurden die Herzen entnommen. Immunfärbungen zeigten, dass ein Teil der implantierten Zellen auch unter diesen in vivo-Bedingungen für α-sarkomeres Actinin positiv wurde und somit einen kardiomyozytären Phänotyp aufwies.
7

Application of stem cell markers in search for neoplastic germ cells in dysgenetic gonads, extragonadal tumors, and in semen of infertile men /

Engel Høi-Hansen, Christina. January 2008 (has links)
University, Diss.--Copenhagen, 2007.
8

Effekte mechanischer Reize auf osteogen differenzierte Zellen in einer dreidimensionalen Kollagen-Typ-1-Matrix

Thiel, Angela, January 2007 (has links)
Ulm, Univ., Diss., 2007.
9

Einfluss von Wachstumsfaktoren auf die in-vitro Differenzierung muriner, embryonaler Stammzellen

Böttinger, Ann-Marie Kathrin. January 2007 (has links)
Ulm, Univ., Diss., 2007.
10

Analyse des In-vivo-Differenzierungspotentials humaner leukämischer Zellen sowie humaner und muriner neuraler Stammzellen

Dürr, Michael. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Würzburg.

Page generated in 0.0577 seconds