• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 9
  • 6
  • Tagged with
  • 28
  • 11
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Signalwege der NO-induzierten Apoptose in isolierten Kardiomyozyten der adulten Ratte /

Breitwieser, Stephanie. January 2004 (has links)
Zugl.: Giessen, Universiẗat, Diss., 2004.
2

Generation of cardiomyocytes from vessel wall-resident stem cells / Erzeugung von Kardiomyozyten aus Gefäßwand-residenten Stammzellen

Mekala, SubbaRao January 2019 (has links) (PDF)
Myocardial infarction (MI) is a major cause of health problems and is among the leading deadly ending diseases. Accordingly, regenerating functional myocardial tissue and/or cardiac repair by stem cells is one of the most desired aims worldwide. Indeed, the human heart serves as an ideal target for regenerative intervention, because the capacity of the adult myocardium to restore itself after injury or infarct is limited. Thus, identifying new sources of tissue resident adult stem or progenitor cells with cardiovascular potential would help to establish more sophisticated therapies in order to either prevent cardiac failure or to achieve a functional repair. Ongoing research worldwide in this field is focusing on a) induced pluripotent stem (iPS) cells, b) embryonic stem (ES) cells and c) adult stem cells (e. g. mesenchymal stem cells) as well as cardiac fibroblasts or myofibroblasts. However, thus far, these efforts did not result in therapeutic strategies that were transferable into the clinical management of MI and heart failure. Hence, identifying endogenous and more cardiac-related sources of stem cells capable of differentiating into mature cardiomyocytes would open promising new therapeutic opportunities. The working hypothesis of this thesis is that the vascular wall serves as a niche for cardiogenic stem cells. In recent years, various groups have identified different types of progenitors or mesenchymal stem cell-like cells in the adventitia and sub-endothelial zone of the adult vessel wall, the so called vessel wall-resident stem cells (VW-SCs). Considering the fact that heart muscle tissue contains blood vessels in very high density, the physiological relevance of VW-SCs for the myocardium can as yet only be assumed. The aim of the present work is to study whether a subset of VW-SCs might have the capacity to differentiate into cardiomyocyte-like cells. This assumption was challenged using adult mouse aorta-derived cells cultivated in different media and treated with selected factors. The presented results reveal the generation of spontaneously beating cardiomyocyte-like cells using specific media conditions without any genetic manipulation. The cells reproducibly started beating at culture days 8-10. Further analyses revealed that in contrast to several publications reporting the Sca-1+ cells as cardiac progenitors the Sca-1- fraction of aortic wall-derived VW-SCs reproducibly delivered beating cells in culture. Similar to mature cardiomyocytes the beating cells developed sarcomeric structures indicated by the typical cross striated staining pattern upon immunofluorescence analysis detecting α-sarcomeric actinin (α-SRA) and electron microscopic analysis. These analyses also showed the formation of sarcoplasmic reticulum which serves as calcium store. Correspondingly, the aortic wall-derived beating cardiomyocyte-like cells (Ao-bCMs) exhibited calcium oscillations. This differentiation seems to be dependent on an inflammatory microenvironment since depletion of VW-SC-derived macrophages by treatment with clodronate liposomes in vitro stopped the generation of Ao bCMs. These locally generated F4/80+ macrophages exhibit high levels of VEGF (vascular endothelial growth factor). To a great majority, VW-SCs were found to be positive for VEGFR-2 and blocking this receptor also stopped the generation VW-SC-derived beating cells in vitro. Furthermore, the treatment of aortic wall-derived cells with the ß-receptor agonist isoproterenol or the antagonist propranolol resulted in a significant increase or decrease of beating frequency. Finally, fluorescently labeled aortic wall-derived cells were implanted into the developing chick embryo heart field where they became positive for α-SRA two days after implantation. The current data strongly suggest that VW-SCs resident in the vascular adventitia deliver both progenitors for an inflammatory microenvironment and beating cells. The present study identifies that the Sca-1- rather than Sca-1+ fraction of mouse aortic wall-derived cells harbors VW-SCs differentiating into cardiomyocyte-like cells and reveals an essential role of VW-SCs-derived inflammatory macrophages and VEGF-signaling in this process. Furthermore, this study demonstrates the cardiogenic capacity of aortic VW-SCs in vivo using a chimeric chick embryonic model. / Der Myokardinfarkt (MI) ist einer der Hauptgründe für gesundheitliche Probleme und zählt zu einer der am häufigsten tödlich verlaufenden Krankheiten weltweit. Daher ist es nicht verwunderlich, dass die Regeneration von funktionellem Myokardgewebe und/oder die kardiale Reparatur durch Stammzellen eines der weltweit am meisten angestrebten Ziele darstellt. Das adulte menschliche Herz stellt aufgrund seiner äußerst eingeschränkten endogenen Regenerationskapazität, die bei weitem nicht ausreicht, das geschädigte Gewebe zu erneuern, ein ideales Zielorgan für regenerative Therapieverfahren dar. Folglich könnte die Identifizierung neuer Quellen adulter Stamm- oder Vorläuferzellen mit kardiovaskulärem Differenzierungspotential dabei helfen, verfeinerte Therapien zu entwickeln, um entweder kardiale Fehlfunktionen zu verhindern oder eine deutlich verbesserte myokardiale Reparatur zu erreichen. Die aktuelle weltweite Forschung auf diesem Gebiet fokussiert sich auf: a) induzierte pluripotente Stammzellen (iPS), b) embryonale Stammzellen (ES) und c) adulte Stammzellen, wie z. B. mesenchymale Stammzellen, kardiale Fibroblasten und Mesangioblasten sowie Myofibroblasten. Bisher haben jedoch alle Bemühungen noch zu keinem Durchbruch geführt, so dass die teilweise vielversprechenden experimentellen Ergebnisse nicht in die klinische Therapie des MI und der kardialen Defekte mittels Stammzellen transferiert werden können. Abgesehen davon, ob und wie stark so ein endogenes herzeigenes Potential wäre, würde die Identifizierung neuer endogener Stammzellen mit kardiogenem Potential, die genaue Charakterisierung ihrer Nischen und der Mechanismen ihrer Differenzierung einen Meilenstein in der kardioregenerativen Stammzelltherapie darstellen. Die Arbeitshypothese der hier vorgelegten Dissertation besagt, dass die Gefäßwand als Nische solcher Zellen dienen könnte. Innerhalb der letzten Jahre konnte die Adventitia und die subendotheliale Zone der adulten Gefäßwand als Nische für unterschiedliche Typen von Vorläuferzellen und multipotenten Stammzellen, die sogenannten Gefäßwand-residenten Stammzellen (VW-SCs) identifiziert werden. In Anbetracht der Tatsache, dass die Blutgefäße aufgrund ihrer hohen Dichte im Herzen eine essentielle stromale Komponente des Herzgewebes darstellen, kann die mögliche klinische Relevanz von VW-SCs für das Myokardium im Moment nur erahnt werden. Ausgehend von der Annahme, dass eine Subpopulation dieser VW-SCs die Fähigkeit besitzt, sich in Kardiomyozyten-ähnliche Zellen zu differenzieren, sollte im Rahmen dieser Dissertationsarbeit das myokardiale Potential der Gefäßwand-residenten Stammzellen aus der Aorta adulter Mäuse studiert werden, indem die Zellen unter unterschiedlichen definierten Bedingungen kultiviert und dann sowohl morphologisch als auch funktionell charakterisiert werden. Erstaunlicherweise zeigten die ersten Ergebnisse die Generierung spontan schlagender Kardiomyozyten-ähnlicher Zellen, nur durch Verwendung eines speziellen Nährmediums und ohne jegliche genetische Manipulation. Die im Rahmen dieser Arbeit durchgeführten Analysen belegen zudem, dass die Kardiomyozyten-ähnlichen Zellen reproduzierbar nach ca. 9-11 Tagen in der Kultur anfangen, spontan zu schlagen. In immunzytochemischen Analysen zeigten die schlagenden Zellen ein quergestreiftes Färbemuster für α sarkomeres Actinin. Passend dazu wiesen diese spontan schlagenden Zellen, wie reife Kardiomyozyten, Sarkomerstrukturen mit Komponenten des sarkoplasmatischen Retikulums in elektronenmikroskopischen Analysen auf. Sie zeigten dementsprechend eine mit dem spontanen Schlag assoziierte Kalzium-Oszillation. Erstaunlicherweise zeigten die hier vorgelegten Befunde erstmalig, dass es nicht die Sca-1+ (stem cell antigen-1) Zellen waren, denen seit Jahren eine kardiomyozytäre Kapazität zugeschrieben wird, sondern es waren die Sca-1- Zellen der Mausaorta, die sich zu den spontan schlagenden Zellen differenzierten. Des Weiteren scheint diese Differenzierung von einer endogen generierten inflammatorischen Mikroumgebung abhängig zu sein. Die hier vorgelegten Ergebnisse legen daher den Schluss nahe, dass die VW-SCs in der vaskulären Adventitia sowohl die inflammatorische Mikroumgebung als auch die spontan schlagenden Kardiomyozyten-ähnlichen Zellen bereitstellten. So entstanden in der Kultur aortaler Zellen unter anderem auch Makrophagen, die hohe Mengen des Gefäßwachstumsfaktors VEGF (Vascular Endothelial Growth Factor) aufweisen. Wurden die Makrophagen in der Zellkultur durch Zugabe von Clodtronat-Liposomen depletiert, so wurde damit auch die Generierung spontan schlagender Zellen aus den aortalen VW-SCs unterbunden. Um zu testen, ob und inwieweit dieser Einfluss der Makrophagen auf die Entstehung spontan schlagender Zellen aus den VW-SCs auf den VEGF zurückzuführen ist, wurden kultivierte Zellen der Mausaorta mit dem VEGF-Rezeptor-2-Blocker (E7080) behandelt. Auch diese Behandlung resultierte wie bei der Depletion von Makrophagen darin, dass keine spontan schlagenden Zellen entstanden. Um die von VW-SCs generierten spontan schlagenden Zellen funktionell zu charakterisieren, wurden die kultivierten Zellen der Mausaorta mit Isoproterenol (ß-Sympathomimetikum) und Propranolol (ß-Blocker) behandelt. Eine signifikante Steigerung der Schlagfrequenz unter Isoproterenol und eine Reduzierung bei Zugabe von Propranolol unterstreichen ebenfalls die Kardiomyozyten-ähnliche Eigenschaft der spontan schlagenden Zellen. Schließlich wurden die aus der Mausaorta isolierten Zellen Fluoreszenz-markiert und dann in das kardiale Feld des sich entwickelnden Hühnerembryos (am fünften Tag der Entwicklung) implantiert. Zwei Tage später wurden die Herzen entnommen. Immunfärbungen zeigten, dass ein Teil der implantierten Zellen auch unter diesen in vivo-Bedingungen für α-sarkomeres Actinin positiv wurde und somit einen kardiomyozytären Phänotyp aufwies.
3

Molekulare Determinanten der Kaliumkanalblockade durch die Substanz 293B und der Inaktivierung der a-Untereinheit KCNQ1 im kardialen IKs-Kanalkomplex

Lerche, Christian. Unknown Date (has links)
Main, Universiẗat, Diss., 2001--Frankfurt.
4

Untersuchung zur Wirkung und Wirkmechanismus von NHE-1-Inhibitoren auf die Hypertrophie adulter Rattenkardiomyozyten

Klämbt, Kerstin. January 2005 (has links) (PDF)
Frankfurt (Main), Univ., Diss., 2005.
5

Interactome of the β2b subunit of L-type voltage-gated calcium channels in cardiomyocytes / Interaktom der β2b-Untereinheit von spannungsgesteuerten L-Typ Kalziumkanälen in Kardiomyozyten

Cruz Garcia, Yiliam January 2021 (has links) (PDF)
L-type voltage-gated calcium channels (LTCC) are heteromultimeric membrane proteins that allow Ca2+ entry into the cell upon plasma membrane depolarization. The β subunit of voltage-dependent calcium channels (Cavβ) binds to the α-interaction domain in the pore-forming α1 subunit and regulates the trafficking and biophysical properties of these channels. Of the four Cavβ isoforms, Cavβ2 is predominantly expressed in cardiomyocytes. This subunit associates with diverse proteins besides LTCC, but the molecular composition of the Cavβ2 nanoenvironments in cardiomyocytes is yet unresolved. Here, we used a protein-labeling technique in living cells based on an engineered ascorbate peroxidase 2 (APEX2). In this strategy, Cavβ2b was fused to APEX2 and expressed in adult rat cardiomyocytes using an adenovirus system. Nearby proteins covalently labeled with biotin-phenol were purified using streptavidin-coated beads and identified by mass spectrometry (MS). Analysis of the in situ APEX2-based biotin labeling by MS revealed 61 proteins located in the nanoenvironments of Cavβ2b, with a high specificity and consistency in all the replicates. These proteins are involved in diverse cellular functions such as cellular trafficking, sarcomere organization and excitation-contraction coupling. Among these proteins, we demonstrated an interaction between the ryanodine receptor 2 (RyR2) and Cavβ2b, probably coupling LTCC and the RyR2 into a supramolecular complex at the dyads. This interaction is mediated by the Src homology 3 (SH3) domain of Cavβ2b and is necessary for an effective pacing frequency‐dependent increase in Ca2+-induced Ca2+ release in cardiomyocytes. / Die spannungabhängigen L-Typ Kalziumkanäle (LTCC) sind heteromultimere Membranproteine, die den Einstrom von Kalzium (Ca2+) in die Zelle nach Depolarisation der Plasmamembran vermitteln. Die β-Untereinheit von spannungsabhängigen Kalziumkanälen (Cavβ2) bindet an die α-Interaktionsdomäne in der porenformenden α1-Untereinheit und reguliert den Transport und die biophysikalischen Eigenschaften dieser Kanäle. Es gibt vier Isoformen der β-Untereinheiten, die als Cavβ bezeichnet werden, von denen die Cavβ2 Isoform hauptsächlich in Kardiomyozyten exprimiert wird. Diese Untereinheit assoziiert neben dem LTCC mit einer Vielzahl an weiteren Proteinen. Die molekulare Zusammensetzung der Cavβ2 Nanoumgebung, bzw. die Interaktionspartner der Cavβ2 Untereinheit, in Kardiomyozyten ist jedoch immer noch nicht bekannt. In dieser Arbeit verwendeten wir eine Proteinmarkierungstechnik in lebenden Zellen auf Basis einer modifizierten Ascorbatperoxidase 2 (APEX2) um die Cavβ2 Nanoumgebung genauer zu charakterisieren. Dafür wurde Cavβ2b mit APEX2 fusioniert und adenoviral vermittelt in adulten Ratten-Kardiomyozyten exprimiert. APEX2 katalysiert die kovalente Markierung von möglichen Interaktionspartnern in unmittelbarer Nähe der APEX markierten Cavβ2 Untereinheit mit Biotin-Phenol. Markierte Proteine wurden mit Streptavidin beschichteten Beads isoliert und mittels Massenspektrometrie (MS) identifiziert. Die Analyse der MS ergab 61 Proteine in der Nanoumgebung von Cavβ2b. Die Analyse zeichnete sich durch eine hohe Spezifität und Beständigkeit in allen Replikaten aus. Diese identifizierten Proteine haben diverse Funktionen wie zelluläre Transportsteuerung, den Aufbau von Sarkomeren und elektromechanischen Kopplung. Eines dieser Proteinen war der Ryanodinrezeptor 2 (RyR2) und damit konnten wir eine Interaktion von RyR2 und Cavβ2b nachweisen, welche wahrscheinlich die LTCCs und RyR2 zu einem supramolekularen Komplex in den Dyaden verbindet. Diese Interaktion wird durch die Src homology 3 (SH3) Domäne von Cavβ2b vermittelt und ist für einen effektive Stimulationsfrequenz-abhängigen Anstieg der Calcium-induzierten Calciumfreisetzung in Kardiomyozyten notwendig.
6

Kardiotoxizität von CTRPs und das Vorkommen der CTRP-Rezeptoren in Kardiomyozyten / Cardiotoxicity of CTRPs and the presence of CTRP receptors in cardiomyocytes

Horn, Daniela January 2024 (has links) (PDF)
Die C1q/tumor necrosis factor-related proteins (CTRPs) sind eine Ligandenfamilie aus sezernierten Plasmaproteinen, welche sich in ihrem Grundbauplan ähneln. Daten aus der Literatur deuten darauf hin, dass sie zum Teil positive Effekte auf den Stoffwechsel und das Herz-Kreislaufsystem besitzen und somit eine mögliche therapeutische Zielstruktur darstellen. Während für manche CTRPs bereits Rezeptoren identifiziert werden konnten, ist für andere immer noch nicht geklärt, an welche Rezeptoren sie binden oder über welche sie diese Wirkungen erzielen. Um die CTRPs zukünftig therapeutisch nutzen zu können, muss die Wirkung der CTRPs auf verschiedene Zellen weiter analysiert werden. Dafür wurden in dieser Arbeit Zellen, auf die Expression bereits bekannter CTRP-Rezeptoren hin, untersucht. Des Weiteren wurden die durch CTRP2, CTRP3, CTRP4, CTRP9A, CTRP10, CTRP11, CTRP13 und CTRP14 induzierten Änderungen in der ATP- und Laktatproduktion als Surrogatparameter für Kardiotoxizität in den Kardiomyozytenzelllinien H9c2 und AC16 getestet, um potenziell kardiotoxische Wirkungen frühzeitig erkennen zu können. Es konnte gezeigt werden, dass die CTRPs sicher für Kardiomyozyten zu sein scheinen, was eine wichtige Grundlage für die therapeutische Nutzbarkeit darstellt. / C1q/tumor necrosis factor-related proteins (CTRPs) are a ligand family of secreted plasma proteins that are similar in their basic structure. Literature on the subject indicate that some of them have positive effects on the metabolism and the cardiovascular system and therefore represent a potential therapeutic target structure. While some receptors have already been identified for some CTRPs, for others it is still not clear which receptors they bind to or through which they achieve these effects. In order to be able to use the CTRPs therapeutically in the future, the effect of the CTRPs on different cells must be further analyzed. For that cells were examined in this study for the expression of already known CTRP receptors. Furthermore, CTRP2, CTRP3, CTRP4, CTRP9A, CTRP10, CTRP11, CTRP13 and CTRP14 were tested in the cardiomyocyte cell lines H9c2 and AC16 with respect to their effect on production of ATP and lactate as surrogate parameters for cardiotoxicity in order to be able to recognize potentially cardiotoxic effects at an early stage. It was shown that the CTRPs appear to be safe for cardiomyocytes, which is an important basis for therapeutic utility.
7

Lokalisation und Expression von spannungsabhängigen Natriumkanälen an ventrikulären, neonatalen Kardiomyozyten der Ratte / Functional Protein Expression of Multiple Sodium Channel α-and β-Subunit Isoforms in Neonatal Cardiomyocytes

Bischoff, Sebastian January 2009 (has links) (PDF)
Spannungsabhängige Natriumkanäle bestehen aus einer α-Untereinheit und zugehörigen β-Untereinheiten und sind verantwortlich für die schnelle Aufstrichphase eines Aktionspotenzials. Die α-Untereinheit bildet unter anderem die Pore, während die assoziierten β-Untereinheiten Zelladhäsionsaufgaben erfüllen und verantwortlich für Modulation der Kinetik und die Kommunikation mit dem Extrazellular-raum sind. In Vorarbeiten an Herzen von Säugetieren konnte gezeigt werden, dass sowohl die eigentliche kardiale Isoform Nav1.5, als auch die TTX-sensitiven, neuronalen Isoformen Nav1.1, Nav1.3 und Nav1.6 vorkom-men. Diesen Untersuchungen lagen adulte Kardiomyozyten zugrunde. Unklar war allerdings die Lokalisation und Expression von Natrium-kanälen an neonatalen Herzmuskelzellen. In der vorliegenden Arbeit erfolgte die Isolation ventrikulärer Kardio-myozyten von Herzen neonataler, ein bis zwei Tage alter Ratten. Diese wurden nach zwei Tagen in Kultur mit spezifischen Antikörpern gegen α-und β-Untereinheiten mithilfe immunzytochemischer Unter-suchungsmethoden gefärbt. Zusätzlich wurden Connexin 43 und α-Actinin als Marker für Disci intercalares und intrazelluläre Sarkomere im Sinne einer Doppelfärbung dargestellt. Die Auswertung erfolgte mittels konfokaler Mikroskopie. Die Ergebnisse zeigten eine Darstellung sowohl der kardialen (Nav1.5), als auch der neuronalen, TTX-sensitiven α-Natriumkanalisoformen (Nav1.1, Nav1.2, Nav1.3 und Nav1.6). Ebenso ließen sich alle vier bekannten β-Untereinheiten detektieren. Im Unterschied zu adulten Kardiomyozyten zeigte sich kein iso-formenspezifisches Verteilungsmuster, sondern eine gleichmäßige Ver-teilung aller Natriumkanaluntereinheiten über die Zellmembran. Es konnte für die dargestellten Isoformen eine Kolokalisation mit Connexin 43 an den Disci intercalares detektiert werden. Dies weist auf eine wichtige Rolle bei der Erregungsfortleitung von Zelle zu Zelle hin. / Voltage-gated sodium channels are composed of pore-forming α- and auxiliary β-subunits and are responsible for the rapid depolarization of cardiac action potentials. Recent evidence indicates that neuronal tetrodotoxin (TTX) sensitive sodium channel α-subunits are expressed in the heart in addition to the predominant cardiac TTX resistant Nav1.5 sodium channel α- subunit. These TTX-sensitive isoforms are preferentially localized in the transverse tubules. Since neonatal cardiomyocytes have yet to develop transverse-tubules, we determined the complement of sodium channel subunits expressed in these cells. Neonatal rat ventricular cardiomyocytes were stained with antibodies specific for individual isoforms of sodium channel α- and β-subunits. α-actinin, a component of the z-line, was used as an intracellular marker of sarcomere boundaries. TTX-sensitive sodium channel α-subunit isoforms Nav1.1, Nav1.2, Nav1.3, Nav1.4 and Nav1.6 were detected in neonatal rat heart but at levels reduced compared to the predominant cardiac α-subunit isoform, Nav1.5. Each of the β-subunit isoforms (β1-β4) was also expressed in neonatal cardiac cells. In contrast to adult cardiomyocytes, the α-subunits are distributed in punctate clusters across the membrane surface of neonatal cardiomyocytes; no isoform-specific subcellular localization is observed.
8

Die Bedeutung von Phospholamban Pentameren für die Phospholamban-Phosphorylierung und die Regulation der SERCA2a-Aktivität / The role of phospholamban pentamers for phospholamban phosphorylation and regulation of SERCA2a activity

Wittmann, Tanja January 2014 (has links) (PDF)
Phospholamban (PLN) reguliert in der Herzmuskelzelle die Aktivität der Kalzium-ATPase SERCA2a und damit maßgeblich die Kinetik des myozytären Kalzium-Kreislaufs. PLN liegt im Herz in Form von Monomeren und Pentameren vor, wobei angenommen wird, dass nur die Monomere die Aktivität der SERCA2a durch direkte Interaktion hemmen. Die Funktion der Pentamere ist noch immer unklar. In der vorliegenden Arbeit sollte untersucht werden, ob PLN-Pentamere für die PKA-abhängige Phosphorylierung des PLN und damit für die Regulation der PLN-Aktivität von Bedeutung sein können. Mit Hilfe transfizierter HEK293AD-Zellen und verschiedener PLN-Mutanten wurde gezeigt, dass sowohl PLN-Monomere als auch -Pentamere durch die PKA phosphoryliert werden, wobei die Phosphorylierung der Monomere in Anwesenheit von Pentameren geringer ist und verzögert abläuft. Ohne Pentamer war die Phosphorylierung der Monomere dagegen bereits basal und nach moderater PKA-Stimulation stärker. Ursache dafür schien eine höhere Affinität der PKA für PLN-Pentamere als für Monomere zu sein. Darüber hinaus konnte gezeigt werden, dass nicht nur PLN-Monomere sondern auch das PLN-Pentamer mit der SERCA2a interagieren und das Oligomer im Gegensatz zum PLN-Monomer nach PLN-Phosphorylierung zu einem kleinen Anteil an die SERCA2a gebunden bleibt. Auch spiegelten sich die unterschiedlichen Phosphorylierungsmuster von PLN-Pentamer und Monomer in den SERCA2a-Aktivitäten wieder. Messungen der SERCA2a-Aktivität in Mäuseherzen mit (Wildtyp und TgPLN) und ohne (TgAFA-PLN) PLN-Pentamere zeigten, dass Wildtyp-PLN und TgPLN die SERCA2a stärker inhibieren als TgAFA-PLN, was auf die stärkere basale Phosphorylierung des TgAFA-PLN zurückzuführen war. Nach PKA-Stimulation war der Anstieg der Enzymaktivität in Anwesenheit von TgPLN fast dreimal höher als in TgAFA-PLN. Analog zeigte TgPLN eine deutlichere Steigerung der Phosphorylierung der PLN-Monomere als TgAFA-PLN. Zusammenfassend konnte gezeigt werden, dass PLN-Pentamere durch Hemmung der Monomer-Phosphorylierung deren Aktivität erhöhen mit der Folge einer verstärkten Inhibition der SERCA2a. Da die inhibitorische Wirkung durch PKA-Stimulation vollständig aufgehoben werden kann, erhöhen die Pentamere die Regulationsmöglichkeiten der SERCA2a-Aktivität. / Phospholamban (PLN) regulates the activity of the calcium ATPase SERCA2a and thus the kinetics of myocyte calcium cycling. In the heart, PLN occurs in monomeric and pentameric form, however, only monomers are thought to inhibit the activity of SERCA2a by direct interaction. The function of the pentamer is still unclear. The aim of the present work was to investigate whether PLN pentamers may play a role for PKA dependent PLN phosphorylation and thus for regulating PLN activity. Using transfected HEK293AD cells and various PLN mutants, it was shown that both PLN monomers and pentamers get phosphorylated by PKA. Intriguingly, phosphorylation of monomers was delayed in the presence of pentamers but increased in the absence of pentamers, both under basal conditions and moderate PKA stimulation. The underlying reason for this observation turned out to be a higher affinity of PKA for PLN pentamers compared to monomers. Furthermore, not only PLN monomers but also PLN pentamers interacted with SERCA2a. Unlike monomers, a small proportion of PLN oligomers was still bound to SERCA2a following PLN phosphorylation. Further, SERCA2a activity reflected the different phosphorylation patterns of monomers and pentamers. Measurements of SERCA2a activity in mouse hearts with (Wildtyp-PLN; TgPLN) and without PLN pentamers (TgAFA-PLN) showed that wild-type PLN and TgPLN strongly inhibit SERCA2a due to stronger phosphorylation of TgAFA-PLN. After PKA stimulation, the increase of SERCA2a enzyme activity was almost three times higher in TgPLN than in TgAFA-PLN. Likewise, the increase of monomer phosphorylation was more pronounced in TgPLN than in TgAFA-PLN. Taken together, it was shown that PLN pentamers increase the activity of PLN monomers by attenuating monomer phosphorylation leading to increased inhibition of SERCA2a. Since this inhibition can be completely abolished by PKA stimulation, we conclude that PLN pentamers augment the regulatory range of SERCA2a.
9

Modeling of electrophysiology and tension development in the human heart

Seemann, Gunnar. January 2005 (has links) (PDF)
University, Diss. 2005--Karlsruhe.
10

Role of the β subunit of L-type calcium channels in cardiac hypertrophy / Die Rolle der β Untereinheit von L-Typ Kalziumkänalen in der kardialen Hypertrophie

Pickel, Simone January 2020 (has links) (PDF)
L-type calcium channels (LTCCs) control crucial physiological processes in cardiomyocytes such as the duration and amplitude of action potentials, excitation-contraction coupling and gene expression, by regulating the entry of Ca2+ into the cells. Cardiac LTCCs consist of one pore-forming α1 subunit and the accessory subunits Cavβ, Cavα2δ and Cavγ. Of these auxiliary subunits, Cavβ is the most important regulator of the channel activity; however, it can also have LTCC-independent cellular regulatory functions. Therefore, changes in the expression of Cavβ can lead not only to a dysregulation of LTCC activity, but also to changes in other cellular functions. Cardiac hypertrophy is one of the most relevant risk factors for congestive heart failure and depends on the activation of calcium-dependent prohypertrophic signaling pathways. However, the role of LTCCs and especially Cavβ in this pathology is controversial and needs to be further elucidated. Of the four Cavβ isoforms, Cavβ2 is the predominant one in cardiomyocytes. Moreover, there are five different splice variants of Cavβ2 (Cavβ2a-e), differing only in the N-terminal region. We reported that Cavβ2b is the predominant variant expressed in the heart. We also revealed that a pool of Cavβ2 is targeted to the nucleus in cardiomyocytes. The expression of the nuclear Cavβ2 decreases during in vitro and in vivo induction of cardiomyocyte hypertrophy and overexpression of a nucleus-targeted Cavβ2 completely abolishes the in vitro induced hypertrophy. Additionally, we demonstrated by shRNA-mediated protein knockdown that downregulation of Cavβ2 enhances the hypertrophy induced by the α1-adrenergic agonist phenylephrine (PE) without involvement of LTCC activity. These results suggest that Cavβ2 can regulate cardiac hypertrophy through LTCC-independent pathways. To further validate the role of the nuclear Cavβ2, we performed quantitative proteome analyses of Cavβ2-deficient neonatal rat cardiomyocytes (NRCs). The results show that downregulation of Cavβ2 influences the expression of various proteins, including a decrease of calpastatin, an inhibitor of the calcium-dependent cysteine protease calpain. Moreover, downregulation of Cavβ2 during cardiomyocyte hypertrophy drastically increases calpain activity as compared to controls after treatment with PE. Finally, the inhibition of calpain by calpeptin abolishes the increase in PE-induced hypertrophy in Cavβ2-deficient cells. These results suggest that nuclear Cavβ2 has Ca2+- and LTCC-independent functions during the development of hypertrophy. Overall, our results indicate a new role for Cavβ2 in antihypertrophic signaling in cardiac hypertrophy. / Durch die Regulation des Calciumeintritts in die Zellen kontrollieren L-Typ-Calciumkanäle (LTCCs) wichtige physiologische Prozesse wie die Dauer und Amplitude von Aktionspotentialen, die elektromechanische Kopplung und die Genexpression in Kardiomyozyten. Kardiale LTCCs bestehen aus einer porenformenden α1 Untereinheit und Hilfsuntereinheiten wie Cavβ, Cavα2δ und Cavγ. Von diesen Hilfsuntereinheiten ist Cavβ der wichtigste Regulator der Kanalfunktion, wobei Cavβ auch LTCC-unabhängige zelluläre und regulatorische Funktionen haben kann. Veränderungen in der Expression dieses Proteins können daher zu einer Fehlregulation der LTCC-Aktivität führen, jedoch auch zu Veränderungen von anderen zellulären Funktionen. Einer der häufigsten Risikofaktoren für kongestive Herzinsuffizienz ist die kardiale Hypertrophie, welche abhängig ist von der Aktivierung von Calcium-abhängigen prohypertrophen Signalwegen. Die Rolle von LTCCs und insbesondere von Cavβ in dieser Erkrankung ist jedoch kontrovers und muss noch weiter erforscht werden. Von den vier Cavβ Splicevarianten ist Cavβ2 die dominierende Form in Kardiomyozyten. Darüber hinaus existieren fünf verschiedene Splicevarianten von Cavβ2 (Cavβ2a-e), die sich jeweils nur in der N-terminalen Region unterscheiden. Wir konnten demonstrieren, dass von diesen Splicevarianten überwiegend Cavβ2b im Herzen exprimiert wird. Außerdem konnten wir zeigen, dass ein Teil von Cavβ2 im Nukleus von Kardiomyozyten zu finden ist. Die Expression von nuklearem Cavβ2 verringert sich während der in vitro und in vivo induzierten kardialen Hypertrophie und außerdem verhindert die Überexpression von im Kern lokalisiertem Cavβ2 die in vitro induzierte Hypertrophie komplett. Zusätzlich konnten wir demonstrieren, dass die Reduktion von Cavβ2 mittels shRNA zu einer Steigerung der Hypertrophie induziert durch die Stimulation mit dem α1-adrenergen Agonisten Phenylephrin (PE) führt, ohne dass die LTCC-Aktivität beteiligt ist. Diese Ergebnisse legen nahe, dass Cavβ2 die Entstehung von Hypertrophie durch LTCC-unabhängige Signalwege beeinflussen kann. Um die Rolle von nuklearem Cavβ2 zu bekräftigen, haben wir quantitative Proteomanalysen von Cavβ2 defizienten neonatalen Rattenkardiomyozyten (NRCs) durchgeführt. Die Ergebnisse zeigen, dass die Reduktion von Cavβ2 die Expression verschiedener Proteine beeinflusst, zum Beispiel wird Calpastatin, ein Inhibitor der calciumabhängigen Cysteinproteasen Calpain, herunterreguliert. Außerdem wird durch die Cavβ2 Reduktion während der Hypertrophie von Kardiomyozyten die Calpainaktivität verglichen mit den Kontrollen signifikant erhöht. Letztendlich konnten wir zeigen, dass die Inhibierung von Calpain durch Calpeptin die gesteigerte PE-induzierte Hypertrophie in Cavβ2-defizienten Zellen verhindert. Diese Ergebnisse lassen eine Calcium- und LTCC-unabhängige Funktion von nuklearem Cavβ2 während der Entwicklung von Hypertrophie, annehmen. Insgesamt deuten unsere Ergebnisse auf eine neue Rolle von Cavβ2 in den antihypertrophen Signalwegen in der kardialen Hypertrophie hin.

Page generated in 0.0525 seconds