• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of early-type close binaries

Bell, Steven A. January 1987 (has links)
It has become increasingly clear that many binary systems will pass through a common envelope stage at some point during their evolution. For short period systems composed of main-sequence 0 and early B stars this stage will probably occur for the first time towards the end of hydrogen-core burning in the primary component (case A evolution) rather than during the transition to the giant stage (case B evolution). If masses, radii, luminosities, temperatures and orbital parameters were well determined for a good sample of those systems, it could be established whether the individual components were so close that case A evolution was inevitable or whether the primary component had enough room to complete its main-sequence phase before reaching its Roche. limit and hence case B evolution. The latter mode has been studied extensively (both conservatively and non-conservatively) whereas the reception of matter by the secondary component in the rapid mass-transfer phase of case A evolution has only very recently been investigated. It is still one of the principal problems impeding further progress on this scenario. To resolve this situation and provide observational material with which to compare these theoretical models, an observing program was established to study systems of spectral type earlier than B5 and of orbital period of less than 1.8 in both the Northern and Southern Hemispheres. Light curves were obtained at St Andrews using the newly-refurbished Twin Photometric Telescope and analysed using software developed specifically for this instrument. Further spectroscopic and photometric data were obtained at La Palma SAAO, Sierra Nevada and Boyden. Analyses of these spectroscopic and photometric observations have provided the necessary physical parameters to determine the evolutionary status of these systems. The systems observed were AH Cephei and V1182 Aquilae which are shown to be detached systems, TT Aurigae, SX Aurigae and AI Crucis which are all semi-detached systems and V701 Scorpii and HZ Pyxidis which are contact systems. Accurately-determined parameters of 14 stars have been found, including four 0 stars in detached systems. Therefore-the number of stars with well-determined masses of greater than 30M has been increased by 25%. It is clear from this study that case A mass transfer will play and has played an important role in the evolution of five out of the seven systems. It is debatable whether or not the contact systems have passed through a mass transfer phase, particularly RZ Pyx. The evolutionary history of this system is of particular interest, especially if this binary was in a marginal contact configuration when it arrived on the main sequence. Attempts have been made to look for intrinsic variability in these systems but no periodic variation has been found in any of them. If such a phenomenon exists in one of the components of the binaries in the sample then it must have an amplitude of less than 0.01. The comparison of the physical parameters of 67 stars compiled by the author from this work and from published data with theoretical zero-age and terminal-age main sequences shows that traditional modelling of semi-convection without mass loss is not adequate. Convective overshooting and mass loss play a very important role in the evolution of massive close binary systems of short period.
2

Evolutionary sequences for H and He atmosphere massive white dwarf stars

Ramos, Gabriel Lauffer January 2018 (has links)
White dwarf stars are the most common final stage of stellar evolution, corresponding to 99% of all stars in the Galaxy. White dwarf models can be used to obtain the age of stellar populations, to build an initial to final mass relation to understand the connection between the properties of white dwarfs and their progenitors, determine the upper mass limit that separates white dwarfs progenitors from Type II supernovae, enhance the comprehension of the physical properties of high density matter and derive ages and masses for observed white dwarfs from the cooling tracks. The literature is populated with low mass and intermediate mass white dwarf models, however the massive white dwarfs are often forgotten and the evolutionary sequences are incomplete. In this dissertation, we compute full evolutionary sequences for massive white dwarfs, exploring the evolution of hydrogen-rich and hydrogen-deficient white dwarfs stars with masses between 1.012 and 1.307 M , and initial metallicity of Z = 0.02. These sequences are the result of main sequence stars with masses between 8.8 and 11.8 M . The simulations were performed with the Modules for Experiments in Stellar Astrophysics - MESA code, starting at the zero-age main sequence, through thermally pulsing and mass-loss phases, ending as the white dwarfs at the cooling sequence. Our simulations are full evolutionary, in which we consider the entire evolutionary history of the progenitors. We present reliable nuclear chemical profiles for the whole mass range considered, covering the different expected central compositions, i.e. C/O, O/Ne and Ne/O/Mg, and their dependence with the stellar mass. In addition, we present detailed chemical profiles of hybrid C/O-O/Ne core white dwarfs, found in the mass range between 1.024 and 1.150 M . We present the initial-to-final mass relation, mass-radius relation, and cooling times with improved crystallization limits, considering the effects of atmosphere and core composition.
3

Evolutionary sequences for H and He atmosphere massive white dwarf stars

Ramos, Gabriel Lauffer January 2018 (has links)
White dwarf stars are the most common final stage of stellar evolution, corresponding to 99% of all stars in the Galaxy. White dwarf models can be used to obtain the age of stellar populations, to build an initial to final mass relation to understand the connection between the properties of white dwarfs and their progenitors, determine the upper mass limit that separates white dwarfs progenitors from Type II supernovae, enhance the comprehension of the physical properties of high density matter and derive ages and masses for observed white dwarfs from the cooling tracks. The literature is populated with low mass and intermediate mass white dwarf models, however the massive white dwarfs are often forgotten and the evolutionary sequences are incomplete. In this dissertation, we compute full evolutionary sequences for massive white dwarfs, exploring the evolution of hydrogen-rich and hydrogen-deficient white dwarfs stars with masses between 1.012 and 1.307 M , and initial metallicity of Z = 0.02. These sequences are the result of main sequence stars with masses between 8.8 and 11.8 M . The simulations were performed with the Modules for Experiments in Stellar Astrophysics - MESA code, starting at the zero-age main sequence, through thermally pulsing and mass-loss phases, ending as the white dwarfs at the cooling sequence. Our simulations are full evolutionary, in which we consider the entire evolutionary history of the progenitors. We present reliable nuclear chemical profiles for the whole mass range considered, covering the different expected central compositions, i.e. C/O, O/Ne and Ne/O/Mg, and their dependence with the stellar mass. In addition, we present detailed chemical profiles of hybrid C/O-O/Ne core white dwarfs, found in the mass range between 1.024 and 1.150 M . We present the initial-to-final mass relation, mass-radius relation, and cooling times with improved crystallization limits, considering the effects of atmosphere and core composition.
4

Evolutionary sequences for H and He atmosphere massive white dwarf stars / Sequências evolucionárias de estrelas anãs brancas massivas com atmosfera de H e He

Ramos, Gabriel Lauffer January 2018 (has links)
White dwarf stars are the most common final stage of stellar evolution, corresponding to 99% of all stars in the Galaxy. White dwarf models can be used to obtain the age of stellar populations, to build an initial to final mass relation to understand the connection between the properties of white dwarfs and their progenitors, determine the upper mass limit that separates white dwarfs progenitors from Type II supernovae, enhance the comprehension of the physical properties of high density matter and derive ages and masses for observed white dwarfs from the cooling tracks. The literature is populated with low mass and intermediate mass white dwarf models, however the massive white dwarfs are often forgotten and the evolutionary sequences are incomplete. In this dissertation, we compute full evolutionary sequences for massive white dwarfs, exploring the evolution of hydrogen-rich and hydrogen-deficient white dwarfs stars with masses between 1.012 and 1.307 M , and initial metallicity of Z = 0.02. These sequences are the result of main sequence stars with masses between 8.8 and 11.8 M . The simulations were performed with the Modules for Experiments in Stellar Astrophysics - MESA code, starting at the zero-age main sequence, through thermally pulsing and mass-loss phases, ending as the white dwarfs at the cooling sequence. Our simulations are full evolutionary, in which we consider the entire evolutionary history of the progenitors. We present reliable nuclear chemical profiles for the whole mass range considered, covering the different expected central compositions, i.e. C/O, O/Ne and Ne/O/Mg, and their dependence with the stellar mass. In addition, we present detailed chemical profiles of hybrid C/O-O/Ne core white dwarfs, found in the mass range between 1.024 and 1.150 M . We present the initial-to-final mass relation, mass-radius relation, and cooling times with improved crystallization limits, considering the effects of atmosphere and core composition.
5

Evolu??o estelar no ensino de Ci?ncias

Silva, Andr? Bastos da 20 December 2017 (has links)
Submitted by Jadson Francisco de Jesus SILVA (jadson@uefs.br) on 2018-07-12T22:44:48Z No. of bitstreams: 1 Disserta??o Andr? VErs?o Final + Ficha Catalogr?fica (1).pdf: 5597865 bytes, checksum: 47b14bdb3b0cc0a2e5b68f0252c589ff (MD5) / Made available in DSpace on 2018-07-12T22:44:48Z (GMT). No. of bitstreams: 1 Disserta??o Andr? VErs?o Final + Ficha Catalogr?fica (1).pdf: 5597865 bytes, checksum: 47b14bdb3b0cc0a2e5b68f0252c589ff (MD5) Previous issue date: 2017-12-20 / Funda??o de Amparo ? Pesquisa do Estado da Bahia - FAPEB / In this dissertation we present as proposal the teaching of Star Evolution in the discipline sciences for students of the 9th year of elementary school. From this series, students have their first contact with study of the atomic structure, periodic table, chemical reactions, among other topics of physics and chemistry. Using Stellar Evolution, in an interdisciplinary way, we were able to discuss these obligatory contents and, in addition, we present new knowledge such as: the synthesis of chemical elements, nuclear reactions and other topics of Astronomy and Astrophysics. This approach allows students to gain access to modern physics content guided by NCPs, which in turn has been neglected in school curricula. Based on Chevallard's Didactic Transposition Theory, we analyze the aspects that make it possible to adapt the Wise Knowledge, Star Evolution, to the reality of basic education. To do so, we did initially a quantitative survey in textbooks, evaluating how the knowledge related to Astronomy has been presented. The second step was to perform a pre-test to evaluate students' prior knowledge, and then compare them with a post-test. The transposition of these contents indicated that the Star Evolution in conjunction with the science discipline makes learning more playful and meaningful, being a perfectly feasible proposal, as well as showing the results. In addition, we constructed a didactic game, an educational product that can be used as a tool that helps students learn the evolutionary processes of the stars. / Nesta disserta??o apresentamos como proposta o ensino de Evolu??o Estelar na disciplina ci?ncias para alunos do 9? ano do ensino fundamental. A partir desta s?rie, os alunos tem seu primeiro contato com estudo da estrutura at?mica, tabela peri?dica, rea??es qu?micas, entre outros t?picos de f?sica e qu?mica. Usando a Evolu??o Estelar, de um modo interdisciplinar, pudemos discutir estes conte?dos obrigat?rios e, al?m disso, apresentamos novos conhecimentos como: a s?ntese dos elementos qu?micos, rea??es nucleares e outros temas de Astronomia e Astrof?sica. Esta abordagem permite que os alunos tenham acesso a conte?dos de f?sica moderna orientados pelos PCN, que por sua vez, tem sido ainda negligenciado nos curr?culos escolares. Com base na Teoria da Transposi??o Did?tica de Chevallard, analisamos os aspectos que tornam poss?vel adequar o Saber S?bio e a Evolu??o Estelar, ? realidade do ensino b?sico. Para tanto, fizemos inicialmente um levantamento quantitativo em livros did?ticos, avaliando como os Saberes ligados a Astronomia tem sido apresentados. O segundo passo foi a realiza??o de um pr?-teste para avaliarmos o conhecimento pr?vio dos estudantes, e posteriormente compar?-los com um p?s-teste. A transposi??o destes conte?dos indicou que a Evolu??o Estelar em conjunto com a disciplina ci?ncias torna o aprendizado mais l?dico e significativo, sendo uma proposta perfeitamente vi?vel, assim como mostram os resultados. Ademais, constru?mos um jogo did?tico, produto educacional que pode ser usado como ferramenta que auxilie os estudantes no aprendizado dos processos evolutivos das estrelas.
6

The nearby young [special character] Chamaeleontis cluster as a laboratory for star formation and evolution

Lyo, A-Ran, Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2004 (has links)
[Special characters cannot be displayed. Please see the pdf version of the Abstract for an accurate reproduction.] We studied the circumstellar discs, the initial mass function (IMF), mass distribution, binarity and the fundamental properties of the [special character] 9 Myr-old pre-main sequence (PMS) [special character] Chamaeleontis cluster. Using JHKL colour-colour and colour-excess diagrams, we found the circumstellar disc fraction to be [special character] 0.60 among the late-type members. Four stars with [special character] (K - L) > 0.4 were identified as experiencing ongoing accretion which was later confirmed by high-resolution spectroscopic study. Quantitative analysis of the H[special character] profiles found accretion in these four stars at rates comparable to that of two members of the similarly-aged TW Hydrae Association (TWA); rates 1 - 3 orders of magnitude lower than in younger classical T Tauri stars. Together these results suggest that, while the mass accretion rate decreases with age, PMS stars can retain their inner discs for [special character] 10 Myr. An optical photometric survey spanning 1.3 ?? 1.3 pc added two low-mass stars to the cluster inventory. Together with other recent surveys the population is likely to be significantly complete for primaries with masses M > 0.15M[special character]. The cluster now consists of 18 primaries and 9 confirmed and candidate secondaries, with [special character] 2-4 times higher multiplicity than seen in field dwarfs. The cluster IMF is consistent with that of rich young clusters and field stars. By extending the IMF to lower masses, we predict 20-29 low-mass stars and brown dwarfs may remain undiscovered. From study of the cluster???s spatial and mass distribution, we find the [special character] Cha cluster has significant mass segregation, with > 50 per cent of the stellar mass residing within the central 0.17 pc. Lastly we classified members of the cluster with low-resolution spectra, providing information about the fundamental properties of the PMS stars by comparison to standard dwarfs. Broadband VRI colours and pseudocontinuum indices derived for the cluster stars are indistinguishable from dwarfs at visual and red wavelengths. This suggests the temperature sequence for the PMS [special character] Cha cluster is similar to that of the dwarf sequence. Narrow-band spectral indices for the [special character] Cha cluster possibly indicate higher metallicity and strongly indicate lower surface gravity than the dwarf indices.
7

The nearby young [special character] Chamaeleontis cluster as a laboratory for star formation and evolution

Lyo, A-Ran, Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2004 (has links)
[Special characters cannot be displayed. Please see the pdf version of the Abstract for an accurate reproduction.] We studied the circumstellar discs, the initial mass function (IMF), mass distribution, binarity and the fundamental properties of the [special character] 9 Myr-old pre-main sequence (PMS) [special character] Chamaeleontis cluster. Using JHKL colour-colour and colour-excess diagrams, we found the circumstellar disc fraction to be [special character] 0.60 among the late-type members. Four stars with [special character] (K - L) > 0.4 were identified as experiencing ongoing accretion which was later confirmed by high-resolution spectroscopic study. Quantitative analysis of the H[special character] profiles found accretion in these four stars at rates comparable to that of two members of the similarly-aged TW Hydrae Association (TWA); rates 1 - 3 orders of magnitude lower than in younger classical T Tauri stars. Together these results suggest that, while the mass accretion rate decreases with age, PMS stars can retain their inner discs for [special character] 10 Myr. An optical photometric survey spanning 1.3 ?? 1.3 pc added two low-mass stars to the cluster inventory. Together with other recent surveys the population is likely to be significantly complete for primaries with masses M > 0.15M[special character]. The cluster now consists of 18 primaries and 9 confirmed and candidate secondaries, with [special character] 2-4 times higher multiplicity than seen in field dwarfs. The cluster IMF is consistent with that of rich young clusters and field stars. By extending the IMF to lower masses, we predict 20-29 low-mass stars and brown dwarfs may remain undiscovered. From study of the cluster???s spatial and mass distribution, we find the [special character] Cha cluster has significant mass segregation, with > 50 per cent of the stellar mass residing within the central 0.17 pc. Lastly we classified members of the cluster with low-resolution spectra, providing information about the fundamental properties of the PMS stars by comparison to standard dwarfs. Broadband VRI colours and pseudocontinuum indices derived for the cluster stars are indistinguishable from dwarfs at visual and red wavelengths. This suggests the temperature sequence for the PMS [special character] Cha cluster is similar to that of the dwarf sequence. Narrow-band spectral indices for the [special character] Cha cluster possibly indicate higher metallicity and strongly indicate lower surface gravity than the dwarf indices.
8

Lights and shadows : multi-wavelength analysis of young stellar objects and their protoplanetary discs

Rigon, Laura January 2016 (has links)
Stars form from the collapse of molecular clouds and evolve in an environment rich in gas and dust before becoming Main Sequence stars. During this phase, characterised by the presence of a protoplanetary disc, stars manifest changes in the structure and luminosity. This thesis performs a multi-wavelength analysis, from optical to mm range, on a sample of young stars (YSOs), mainly Classical T Tauri (CTTS). The purpose is to study optical and infrared variability and its relation with the protoplanetary disc. Longer wavelength, in the mm range, are used instead to investigate the evolution of the disc, in terms of dust growth. In optical, an F-test on a sample of 39 CTTS reveals that 67\% of the stars are variable. The variability, quantified through pooled sigma, is visible both in magnitude amplitudes and changes over time. Time series analysis applied on the more variable stars finds the presence of quasi periodicity, with periods longer than two weeks, interpreted either as eclipsing material in the disc happening on a non-regular basis, or as a consequence of star-disc interaction via magnetic field lines. The variability of YSOs is confirmed also in infrared, even if with lower amplitude. No strong correlations are found between optical and infrared variability, which implies a different cause or a time shift in the two events. By using a toy model to explore their origin, I find that infrared variations are likely to stem from emissions in the inner disc. The evolution of discs in terms of dust growth is confirmed in most discs by the analysis of the slope of the spectral energy distribution (SED), after correcting for wind emission and optical depth effects. However, the comparison with a radiative transfer model highlights that a number of disc parameters, in particular disc masses and temperature, dust size distribution and composition, can also affect the slope of the SED.

Page generated in 0.104 seconds