1 |
Novel Compressor Blade Design Study., Abhay Srinivas 15 October 2015 (has links)
No description available.
|
2 |
Computational Fluid Dynamics Analysis of Butterfly Valve Performance FactorsDel Toro, Adam 01 May 2012 (has links)
Butterfly valves are commonly used in industrial applications to control the internal flow of both compressible and incompressible fluids. A butterfly valve typically consists of a metal disc formed around a central shaft, which acts as its axis of rotation. As the valve's opening angle is increased from 0 degrees (fully closed) to 90 degrees (fully open), fluid is able to more readily flow past the valve. Characterizing a valve's performance factors, such as pressure drop, hydrodynamic torque, flow coefficient, loss coefficient, and torque coefficient, is necessary for fluid system designers to account for system requirements to properly operate the valve and prevent permanent damage from occurring. This comparison study of a 48-inch butterfly valve's experimental performance factors using Computational Fluid Dynamics (CFD) in an incompressible fluid at Reynolds numbers ranging approximately between 105 to 106 found that for mid-open positions (30-60 degrees), CFD was able to appropriately predict common performance factors for butterfly valves. For lower valve angle cases (10-20 degrees), CFD simulations failed to predict those same values, while higher valve angles (70-90 degrees) gave mixed results. (152 pages)
|
3 |
Aplicação de CFD para obtenção de derivadas hidrodinâmicas de embarcações em condição de manobra. / Application of CFD in order to obtain hydrodynamic derivatives of vessels in maneuvering condition.Gallina, André de Farias 08 December 2014 (has links)
O aumento do uso de códigos numéricos baseados em dinâmica de fluidos computacional (CFD) atrelado a problemas de engenharia naval e a necessidade de se estabelecer a proximidade dos resultados obtidos nas simulações com os experimentos físicos serviu de motivação para execução deste trabalho. O tema do presente trabalho é pertinente uma vez que o número de trabalhos publicados que simulam com precisão ensaios de embarcações em condição de manobra e obtêm as derivadas hidrodinâmicas que caracterizam o movimento é muito pequeno, atendendo assim a uma demanda existente por novas confrontações numérico/experimentais. Com isso, um conjunto de ensaios de PMM (Planar Motion Mechanism), mais especificamente os ensaios de sway e yaw puros e yaw com drift, e arrasto oblíquo foram executados na embarcação KVLCC2, nas condições de manobra, similares aos ensaios realizados pelo laboratório italiano ISEAN que tinha por objetivo fornecer uma base de comparação para trabalhos em CFD. Os resultados das forças e momentos das simulações foram comparados com os obtidos nos ensaios, bem como as derivadas hidrodinâmicas que caracterizam a embarcação estudada. De maneira geral, os resultados obtidos nas simulações mostraram-se muito próximos aos obtidos a partir do ensaio, fornecendo assim um bom resultado nas derivadas hidrodinâmica, principalmente com relação às derivadas em função das velocidades de translação e rotação. Na expectativa de ampliar a aplicação do método de solução proposto, um novo conjunto de simulações foi realizado na escala real da embarcação. As dificuldades encontradas devido às incompatibilidades nos números de Reynolds mostraram-se presentes, de maneira similar às encontradas nos ensaios físicos evidenciando inclusive que o fator de forma está diretamente atrelado ao número de Reynolds, contrariando a hipótese clássica e alinhando-se com trabalhos mais recentes publicados sobre o tema. Os resultados encontrados a partir da aplicação da metodologia mostram coerência em relação às respostas encontradas nos ensaios, fornecendo uma alternativa ao método clássico de obtenção das características hidrodinâmicas de uma embarcação de superfície em condição de manobra. Ainda fornece uma opção de cálculos, que ainda necessita de melhorias e validação mais elaborada, nas condições da escala real, fato impossível sem o uso de simulações. / The growing use of numerical codes based on computational fluid dynamics (CFD) in problems related with marine engineering and the need to establish the reliability of the results from the simulations with those derived from physical tests served as the motivation for performing the work. The subject of this work is relevant since the number of published works that accurately simulate and test the conditions of vessels in maneuvering and obtains the hydrodynamic derivatives that characterize the movement is very small, thus meeting an existing demand for the new numeric confrontations / experimental. Therefore, a set of PMM tests (Planar Motion Mechanism), more specifically: pure sway, pure yaw and yaw whit drift, and static drift, were performed on the vessel KVLCC2 under conditions of maneuver, similar to tests conducted by the Italian laboratory ISEAN which was intended to provide a basis of comparison for work with CFD. The results of the forces and moments of simulations were compared with those from the tests, as well as the hydrodynamic derivatives which characterize the vessel studied. In general, the results from simulations were very close to those from the experiment, thus providing a good result in hydrodynamic, derived primarily related to derivatives, depending on the speed of translation and rotation. Expecting to expand the application of the proposed method, a new solution set of simulations was carried out in a full-scale vessel. The difficulties encountered due to incompatibilities in the Reynolds numbers were similarly found in the physical testing. This included demonstrating the form factor directly linked to the Reynolds number, contrary to the classical hypothesis and aligning with the latest publications on the subject. The results from the application of the methodology show consistency with the solutions found in the tests, providing an alternative to the classical method of obtaining the hydrodynamic characteristics of a surface vessel in a condition of maneuver. We also provide an option of calculations, which still needs improvement and a more elaborate validation under full-scale conditions, which would be impossible without the use of simulations.
|
4 |
Aplicação de CFD para obtenção de derivadas hidrodinâmicas de embarcações em condição de manobra. / Application of CFD in order to obtain hydrodynamic derivatives of vessels in maneuvering condition.André de Farias Gallina 08 December 2014 (has links)
O aumento do uso de códigos numéricos baseados em dinâmica de fluidos computacional (CFD) atrelado a problemas de engenharia naval e a necessidade de se estabelecer a proximidade dos resultados obtidos nas simulações com os experimentos físicos serviu de motivação para execução deste trabalho. O tema do presente trabalho é pertinente uma vez que o número de trabalhos publicados que simulam com precisão ensaios de embarcações em condição de manobra e obtêm as derivadas hidrodinâmicas que caracterizam o movimento é muito pequeno, atendendo assim a uma demanda existente por novas confrontações numérico/experimentais. Com isso, um conjunto de ensaios de PMM (Planar Motion Mechanism), mais especificamente os ensaios de sway e yaw puros e yaw com drift, e arrasto oblíquo foram executados na embarcação KVLCC2, nas condições de manobra, similares aos ensaios realizados pelo laboratório italiano ISEAN que tinha por objetivo fornecer uma base de comparação para trabalhos em CFD. Os resultados das forças e momentos das simulações foram comparados com os obtidos nos ensaios, bem como as derivadas hidrodinâmicas que caracterizam a embarcação estudada. De maneira geral, os resultados obtidos nas simulações mostraram-se muito próximos aos obtidos a partir do ensaio, fornecendo assim um bom resultado nas derivadas hidrodinâmica, principalmente com relação às derivadas em função das velocidades de translação e rotação. Na expectativa de ampliar a aplicação do método de solução proposto, um novo conjunto de simulações foi realizado na escala real da embarcação. As dificuldades encontradas devido às incompatibilidades nos números de Reynolds mostraram-se presentes, de maneira similar às encontradas nos ensaios físicos evidenciando inclusive que o fator de forma está diretamente atrelado ao número de Reynolds, contrariando a hipótese clássica e alinhando-se com trabalhos mais recentes publicados sobre o tema. Os resultados encontrados a partir da aplicação da metodologia mostram coerência em relação às respostas encontradas nos ensaios, fornecendo uma alternativa ao método clássico de obtenção das características hidrodinâmicas de uma embarcação de superfície em condição de manobra. Ainda fornece uma opção de cálculos, que ainda necessita de melhorias e validação mais elaborada, nas condições da escala real, fato impossível sem o uso de simulações. / The growing use of numerical codes based on computational fluid dynamics (CFD) in problems related with marine engineering and the need to establish the reliability of the results from the simulations with those derived from physical tests served as the motivation for performing the work. The subject of this work is relevant since the number of published works that accurately simulate and test the conditions of vessels in maneuvering and obtains the hydrodynamic derivatives that characterize the movement is very small, thus meeting an existing demand for the new numeric confrontations / experimental. Therefore, a set of PMM tests (Planar Motion Mechanism), more specifically: pure sway, pure yaw and yaw whit drift, and static drift, were performed on the vessel KVLCC2 under conditions of maneuver, similar to tests conducted by the Italian laboratory ISEAN which was intended to provide a basis of comparison for work with CFD. The results of the forces and moments of simulations were compared with those from the tests, as well as the hydrodynamic derivatives which characterize the vessel studied. In general, the results from simulations were very close to those from the experiment, thus providing a good result in hydrodynamic, derived primarily related to derivatives, depending on the speed of translation and rotation. Expecting to expand the application of the proposed method, a new solution set of simulations was carried out in a full-scale vessel. The difficulties encountered due to incompatibilities in the Reynolds numbers were similarly found in the physical testing. This included demonstrating the form factor directly linked to the Reynolds number, contrary to the classical hypothesis and aligning with the latest publications on the subject. The results from the application of the methodology show consistency with the solutions found in the tests, providing an alternative to the classical method of obtaining the hydrodynamic characteristics of a surface vessel in a condition of maneuver. We also provide an option of calculations, which still needs improvement and a more elaborate validation under full-scale conditions, which would be impossible without the use of simulations.
|
5 |
Virtual Planar Motion Mechanism Testing of 8:1 SpheroidsBall, Eddie H. 23 June 2015 (has links)
PMM testing is a method used to identify the added mass and damping coefficients used in the equations of motion of a vehicle by attempting to decouple the forces on a body due to velocity and acceleration as a result of creating "hydrodynamically pure" velocities and accelerations. This makes it possible to use quasi-steady state models with terms independent of both velocity and acceleration. This paper explores the ability of simple damping models (solely a function of velocity) with added mass terms (solely a function of acceleration) to simulate the heave force of an 8:1 ellipsoid undergoing PMM testing. In order to help explain the complexity of the flow during PMM tests, a flow analysis of the 8:1 spheroid is provided, which discusses the flow topology of spheroids at steady angle of attack, validity of quasi-steady models, and some other basic flow features seen in PMM testing.
In this paper, a simple proportionality relationship between a linear and quadratic damping model is revealed. It is also shown that variations in the heave force response during PMM tests are most heavily influenced by viscous effects, especially cross flow separation. Finally, it is shown where these models break down, owing to the increasing nonlinearity of the flow induced by the harsher motions of large amplitude and/or large frequency tests. / Master of Science
|
Page generated in 0.0269 seconds