• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

τ Sco: The Discovery of the Clones

Petit, Véronique, Massa, Derck L., Marcolino, Wagner L.F., Wade, Gregg A., Ignace, Richard 12 July 2011 (has links)
The B0.2 V magnetic star τ Sco stands out from the larger population of massive magnetic OB stars due to its remarkable, superionized wind, apparently related to its peculiar magnetic field - a field which is far more complex than the mostly-dipolar fields usually observed in magnetic OB stars. τ Sco is therefore a puzzling outlier in the larger picture of stellar magnetism - a star that still defies interpretation in terms of a physically coherent model. Recently, two early B-type stars were discovered as τ Sco analogues, identified by the striking similarity of their UV spectra to that of τ Sco, which was - until now - unique among OB stars. We present the recent detection of their magnetic fields by the MiMeS collaboration, reinforcing the connection between the presence of a magnetic field and a superionized wind. We will also present ongoing observational efforts undertaken to establish the precise magnetic topology, in order to provide additional constrains for existing models attempting to reproduce the unique wind structure of τ Sco-like stars.
12

Magnetic field of the Ap star EP UMa

Melin, Jakob January 2023 (has links)
Magnetic fields play a crucial roll in the stellar activity and evolutionof stars. Despite much research there is much that we do notunderstand. Among Ap stars, empirical evidence has suggested a minimumthreshold for the dipolar magnetic field strength of Bp ≈ 300G.This thesis studies the magnetic field of the Ap star EP UMa usingthe oblique rotator model, which is modeling the star’s magnetic fieldas a dipole. The magnetic field was calculated through the StokesV- and I-spectrum emitted by the star. In total 16 observations ofthe Stokes V and I spectrum were used, collected from the spectropolarimeterNARVAL. These spectra were then analysed using the leastsquares deconvolution method, creating average Stokes V and I profiles,through which the magnetic field were calculated. The result ofthis study indicates a magnetic field of EP UMa with polar strengthof 74G ≤ Bp ≤ 196G, which is well below the suggested minimumthreshold.
13

Magnetic flux transport simulations : applications to solar and stellar magnetic fields

Cook, Graeme Robert January 2011 (has links)
Magnetic fields play a key role in a wide variety of phenomena found on the Sun. One such phenomena is the Coronal Mass Ejection (CME) where a large amount of material is ejected from the Sun. CME’s may directly affect the earth, therefore understanding their origin is of key importance for space weather and the near-Earth environment. In this thesis, the nature and evolution of solar magnetic fields is considered through a combination of Magnetic Flux Transport Simulations and Potential Field Source Surface Models. The Magnetic Flux Transport Simulations produce a realistic description of the evolution and distribution of the radial magnetic field at the level of the solar photosphere. This is then applied as a lower boundary condition for the Potential Field Source Surface Models which prescribe a coronal magnetic field. Using these two techniques, the location and variation of coronal null points, a key element in the Magnetic Breakout Model of CMEs, are determined. Results show that the number of coronal null points follow a cyclic variation in phase with the solar cycle. In addition, they preferentially form at lower latitudes as a result of the complex active latitude field. Although a significant number of coronal nulls may exist at any one time (≈ 17), it is shown that only half may satisfy the necessary condition for breakout. From this it is concluded that while the Magnetic Breakout Model of CMEs is an important model in understanding the origin of the CMEs, other processes must occur in order to explain the observed number of CMEs. Finally, the Magnetic Flux Transport Simulations are applied to stellar magnetic fields and in particular to the fast rotating star HD171488. From this speculative study it is shown that the Magnetic Flux Transport Simulations constructed for the Sun may be applied in very different stellar circumstances and that for HD171488 a significantly higher rate of meridional flow (1200-1400 ms⁻¹) is required to match observed magnetic field distributions.
14

Magnetic Fields in Massive Stars

Hubrig, S., Schöller, M., Briquet, M., Pogodin, M. A., Yudin, R. V., González, J. F., Morel, T., De Cat, P., Ignace, R., North, P., Mathys, G., Peters, G. J. 01 April 2008 (has links)
We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.
15

T Tauri stars : mass accretion and X-ray emission

Gregory, Scott G. January 2007 (has links)
I develop the first magnetospheric accretion model to take account of the observed complexity of T Tauri magnetic fields, and the influence of stellar coronae. It is now accepted that accretion onto classical T Tauri stars is controlled by the stellar magnetosphere, yet to date the majority of accretion models have assumed that the stellar magnetic field is dipolar. By considering a simple steady state accretion model with both dipolar and complex magnetic fields I find a correlation between mass accretion rate and stellar mass of the form M[dot above] proportional to M[asterisk subscript, alpha superscript], with my results consistent within observed scatter. For any particular stellar mass there can be several orders of magnitude difference in the mass accretion rate, with accretion filling factors of a few percent. I demonstrate that the field geometry has a significant effect in controlling the location and distribution of hot spots, formed on the stellar surface from the high velocity impact of accreting material. I find that hot spots are often at mid to low latitudes, in contrast to what is expected for accretion to dipolar fields, and that particularly for higher mass stars, accreting material is predominantly carried by open field lines. Material accreting onto stars with fields that have a realistic degree of complexity does so with a distribution of in-fall speeds. I have also modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating from surface magnetograms I find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, I calculate X-ray periods and make comparisons with optically determined rotation periods. I find that X-ray periods are typically equal to, or are half of, the optical periods. Further, I find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius. I also present some results that show that the largest flares detected on T Tauri stars may occur inside extended magnetic structures arising from the reconnection of open field lines within the disc. I am currently working to establish whether such large field line loops can remain closed for a long enough time to fill with plasma before being torn open by the differential rotation between the star and the disc. Finally I discuss the current limitations of the model and suggest future developments and new avenues of research.
16

Hide and seek : radial-velocity searches for planets around active stars

Haywood, Raphaëlle D. January 2015 (has links)
The detection of low-mass extra-solar planets through radial-velocity searches is currently limited by the intrinsic magnetic activity of the host stars. The correlated noise that arises from their natural radial-velocity variability can easily mimic or conceal the orbital signals of super-Earth and Earth-mass extra-solar planets. I developed an intuitive and robust data analysis framework in which the activity-induced variations are modelled with a Gaussian process that has the frequency structure of the photometric variations of the star, thus allowing me to determine precise and reliable planetary masses. I applied this technique to three recently discovered planetary systems: CoRoT-7, Kepler-78 and Kepler-10. I determined the masses of the transiting super-Earth CoRoT-7b and the small Neptune CoRoT-7c to be 4.73 ± 0.95 M⊕ and 13.56 ± 1.08 M⊕, respectively. The density of CoRoT-7b is 6.61 ± 1.72 g.cm⁻³, which is compatible with a rocky composition. I carried out Bayesian model selection to assess the nature of a previously identified signal at 9 days, and found that it is best interpreted as stellar activity. Despite the high levels of activity of its host star, I determined the mass of the Earth-sized planet Kepler-78b to be 1.76 ± 0.18 M⊕. With a density of 6.2(+1.8:-1.4) g.cm⁻³, it is also a rocky planet. I found the masses of Kepler-10b and Kepler-10c to be 3.31 ± 0.32 M⊕ and 16.25 ± 3.66 M⊕, respectively. Their densities, of 6.4(+1.1:-0.7) g.cm⁻³ and 8.1 ± 1.8 g.cm⁻³, imply that they are both of rocky composition – even the 2 Earth-radius planet Kepler-10c! In parallel, I deepened our understanding of the physical origin of stellar radial-velocity variability through the study of the Sun, which is the only star whose surface can be imaged at high resolution. I found that the full-disc magnetic flux is an excellent proxy for activity-induced radial-velocity variations; this result may become key to breaking the activity barrier in coming years. I also found that in the case of CoRoT-7, the suppression of convective blueshift leads to radial-velocity variations with an rms of 1.82 m.s⁻¹, while the modulation induced by the presence of dark spots on the rotating stellar disc has an rms of 0.46 m.s⁻¹. For the Sun, I found these contributions to be 2.22 m.s⁻¹ and 0.14 m.s⁻¹, respectively. These results suggest that for slowly rotating stars, the suppression of convective blueshift is the dominant contributor to the activity-modulated radial-velocity signal, rather than the rotational Doppler shift of the flux blocked by starspots.

Page generated in 0.0449 seconds