• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 131
  • 131
  • 131
  • 130
  • 105
  • 98
  • 89
  • 30
  • 22
  • 22
  • 21
  • 20
  • 16
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

MAGNETIC FIELDS AND OTHER PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM

Kiuchi, Furea 01 January 2012 (has links)
This document consists of two very different projects but the common thread is in the interest of magnetic fields. It describes the effect of magnetic fields in two Interstellar Medium regions in the Galaxy. Electromagnetic force is one of the four fundamental forces in physics. It is not known where magnetic field has initially risen in the Universe, but what is certain is that it has significant effect in the dynamics of star formation and galaxy formation. The studies aim to better understand the effects of field in an active star forming region and in the halo of the Galaxy. We observed the HI 21 cm spectral line via the Zeeman effect in attempt to detect line-of-sight magnetic field strengths in both of the projects. For the star forming region project in Chapter 2, towards the Eagle Nebula, an upper limit of the field strength was determined. From the observational results, physical conditions of the region were modeled. For the second project in Chapter 3, we attempted to detect magnetic fields via Zeeman effect towards non galactic disk objects. All of the observed positions have radial velocities that cannot be explained by the simple galactic rotation. Hence, they are considered to be non galactic disk sources and often grouped as High Velocity Clouds. With a unique observational technique and analysis, we derived the best fit line-of-sight magnetic fields. A particular interest to us is the Smith Cloud. From the detection of magnetic field, we attempted to estimate the density of the ambient medium in the halo, which will be useful for studying the galaxy formation.
22

ZEEMAN EFFECT STUDIES OF MAGNETIC FIELDS IN THE MILKY WAY

Thompson, Kristen Lynn 01 January 2012 (has links)
The interstellar medium (ISM) of our Galaxy, and of others, is pervaded by ultra low-density gas and dust, as well as magnetic fields. Embedded magnetic fields have been known to play an important role in the structure and dynamics of the ISM. However, the ability to accurately quantify these fields has plagued astronomers for many decades. Unfortunately, the experimental techniques for measuring the strength and direction of magnetic fields are few, and they are observationally challenging. The only direct method of measuring the magnetic field is through the Zeeman effect. The goal of this dissertation is to expand upon the current observational studies and understanding of the effects of interstellar magnetic fields across various regions of the Galaxy. Zeeman effect observations of magnetic fields in two dynamically diverse environments in the Milky Way are presented: (1) An OH and HI absorption line study of envelopes of molecular clouds distributed throughout the Galaxy, and (2) A study of OH absorption lines toward the Galactic center region in the vicinity of the supermassive black hole Sgr A*. We have executed the first systematic observational survey designed to determine the role of magnetic fields in the inter-core regions of molecular clouds. Observations of extragalactic continuum sources that lie along the line-of-sight passing through Galactic molecular clouds were studied using the Arecibo telescope. OH Zeeman effect observations were combined with estimates of column density to allow for computation of the mass-to-flux ratio, a measurement of the gravitational to magnetic energies within a cloud. We find that molecular clouds are slightly subcritical overall. However, individual measurements yield the first evidence for magnetically subcritical molecular gas. Jansky VLA observations of 18 cm OH absorption lines were used to determine the strength of the line-of-sight magnetic field in the Galactic center region. This study yields no clear detections of the magnetic field and results that differ from a similar study by Killeen, Lo, & Crutcher (1992). Our results suggest magnetic fields no more than a few microgauss in strength.
23

Determination of Stellar Parameters through the Use of All Available Flux Data and Model Spectral Energy Distributions

Ekanayake, Gemunu 01 January 2017 (has links)
Basic stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity plays a vital role in the characterization of various stellar populations in the Milky Way. The Stellar parameters can be measured by adopting one or more observational techniques, such as spectroscopy, photometry, interferometry, etc. Finding new and innovative ways to combine these observational data to derive reliable stellar parameters and to use them to characterize some of the stellar populations in our galaxy is the main goal of this thesis. Our initial work, based on the spectroscopic and photometric data available in literature, had the objective of calibrating the stellar parameters from a range of available flux observations from far-UV to far-IR. Much effort has been made to estimate probability distributions of the stellar parameters using Bayesian inference, rather than point estimates. We applied these techniques to blue straggler stars (BSSs) in the galactic field, which are thought to be a product of mass transfer mechanism associated with binary stars. Using photometry available in SDSS and GALEX surveys we identified 85 stars with UV excess in their spectral energy distribution (SED) : indication of a hot white dwarf companion to BSS. To determine the parameter distributions (mass, temperature and age) of the WD companions, we developed algorithms that could fit binary model atmospheres to the observed SED. The WD mass distribution peaks at 0.4M , suggests the primary formation channel of field BSSs is Case-B mass transfer, i.e. when the donor star is in red giant phase of its evolution. Based on stellar evolutionary models, we estimate the lower limit of binary mass transfer efficiency β ~ 0.5. Next, we have focused on the Canis Major overdensity (CMO), a substructure located at low galactic latitude in the Milky Way, where the interstellar reddening (E(B-V )) due to dust is significantly high. In this study we estimated the reddening, metallicity distribution and kinematics of the CMO using a sample of red clump (RC) stars. The averageE(B-V)(~0.19)is consistent with that measured from Schlegel maps (Schlegal et.al. 1998). The overall metallicity and kinematic distribution is in agreement with the previous estimates of the disk stars. But the measured mean alpha element abundance is relatively larger with respect to the expected value for disk stars.
24

Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-darkening Directly from Model Stellar Atmospheres

Neilson, Hilding R., McNeil, Joseph T., Ignace, Richard, Lester, John B. 11 August 2017 (has links)
The transit method, employed by Microvariability and Oscillation of Stars (MOST), Kepler, and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, starspots, and other phenomena at the level of a few hundred parts per million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients that are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary-transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIVs) using the plane-parallel Atlas and spherically symmetric SAtlas codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws leads to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50–100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small, they are systematic, and they appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.
25

A Deep X-ray Look at a Very Massive Star: HETGS Spectroscopy of the Blue Hypergiant Cyg OB2-12 (HIP 101364)

Huenemoerder, David, Oskinova, Lidia M., Ignace, Richard, Hamann, Wolf-Rainer, Schulz, Nobert S., Neilson, Hilding, Shenar, Tomer 01 January 2016 (has links)
We have obtained a Chandra/HETGS spectrum of one of the most massive and luminous stars in the Galaxy: the blue hypergiant Cyg OB2-12 (HIP 101364, spectral type B3 Ia+). This is the first measurement at high resolution of X-ray spectral lines in a blue hypergiant and allows comparison of X-ray properties between massive stars at different but related evolutionary stages: O-type supergiants, luminous blue variables, Wolf-Rayet stars, and blue hypergiants stars. The new data provide a look at how the most massive stars shed mass during their pre-supernova evolution. We find that In Cyg OB2-12 the resolved Si and Mg lines are broadened by about 1000 km/s (FWHM). The lines, however, do not show appreciable centroid shifts (/s), which would be much larger for canonical moderately thick winds (~500 km/s). The He-like Mg XI lines show evidence of photo-excitation, implying a wind origin close to the UV-bright photosphere. The spectrum also indicates relatively high temperature plasma, up to 22 MK (1.9 keV), showing significant continuum and emission lines below 5A (above 2.5 keV). Hence, at first glance, the spectrum resembles neither an O-star thick wind, nor a magnetically confined (narrow-line) plasma. We will present more detailed wind models using both X-ray and UV spectra to constrain fundamental physical parameters of this star.
26

High Resolution X-ray Spec- tra of WR 6

Huenemoerder, David, Gayley, K., Hamann, Wolf-Rainer, Ignace, Richard, Nichols, J., Oskinova, Lidia M., Pollock, A. M.T., Schulz, N. 01 January 2015 (has links)
As WR 6 is a putatively single WN4 star, and is relatively bright (V = 6.9), it is an ideal case for studying the wind mechanisms in these extremely luminous stars. To obtain higher resolution spectra at higher energy (above 1 keV) than previously obtained with the XMM/Newton RGS, we have observed WR 6 with the Chandra High Energy Transmission Grating Spectrometer for 450 ks. We have resolved emission lines of S, Si, Mg, Ne, and Fe, which all show a “fin”-shaped profile, characteristic of a self-absorbed uniformly expanding shell. Steep blue edges gives robust maximal expansion velocities of about 2000 km/s, somewhat larger than the 1700 km/s derived from UV lines. The He-like lines all indicate that X-ray emitting plasmas are far from the photosphere – even at the higher energies where opacity is lowest – as was also the case for the longer wavelength lines observed with XMM-Newton/RGS. Abundances determined from X-ray spectral modeling indicate enhancements consistent with nucleosynthesis. The star was also variable in X-rays and in simultaneous optical photometry obtained with Chandra aspect camera, but not coherently with the optically known period of 3.765 days.
27

Modeling the Variable Polarization of Epsilon Aurigae

Ignace, Richard, Henson, Gary D., Asbury, William 01 June 2016 (has links)
The nature of the edge-on eclipsing binary Epsilon Aurigae remains perplexing, despite notable progress since the recent 2009-2011 eclipse. The binary involves an early F supergiant with a still unknown companion enshrouded in a disk. Although the eclipse geometry produces a significant broad band polarization signature, semiregular pulsations of the F supergiant are also a source of variable polarization, with an amplitude that is commensurate with the effect of the eclipse. This fact makes use of the polarization for studying the disk of the companion far more challenging. In an effort to better understand the pulsation nature of the supergiant, we explore a simple model for the stellar contribution to the polarization signal. The model does reasonably well in characterizing the gross properties of the time-variable polarization.
28

Variable Polarization from Co-Rotating Interaction Regions in Massive Star Winds

Ignace, Richard 01 January 2017 (has links)
Co-rotating Interaction Regions (CIRs) are a well-known phenomenon in the solar wind, and is a favored culprit for certain cyclical behavior observed in the spectra of some massive stars. A prime example are the discrete absorption components (DACs) seen in the UV wind lines of many O stars. Here we report on modeling for the variable continuum polarization that could arise from the presence of CIR structures. Considerations are limited to optically thin scattering. Using a core-halo approach for winds that are thick to electron scattering, an application to observed variable polarization of WR6 (EZ CMa; HD 50896) is presented.
29

On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The Curious Case of WR124

Toala, Jesus A., Oskinova, Lidi, Hamann, W.R., Ignace, Richard, Sander, A.A. C., Todt, H., Chu, Y.H., Guerrero, M. A., Hainich, R., Hainich, R., Terrejon, J. M. 10 December 2018 (has links)
Among the different types of massive stars in advanced evolutionary stages is the enigmatic WN8h type. There are only a few Wolf–Rayet (WR) stars with this spectral type in our Galaxy. It has long been suggested that WN8h-type stars are the products of binary evolution that may harbor neutron stars (NS). One of the most intriguing WN8h stars is the runaway WR 124 surrounded by its magnificent nebula M1-67. We test the presence of an accreting NS companion in WR 124 using ~100 ks long observations by the Chandra X-ray observatory. The hard X-ray emission from WR 124 with a luminosity of L X ~ 1031 erg s−1 is marginally detected. We use the non-local thermodynamic equilibrium stellar atmosphere code PoWR to estimate the WR wind opacity to the X-rays. The wind of a WN8-type star is effectively opaque for X-rays, hence the low X-ray luminosity of WR 124 does not rule out the presence of an embedded compact object. We suggest that, in general, high-opacity WR winds could prevent X-ray detections of embedded NS, and be an explanation for the apparent lack of WR+NS systems.
30

Characterizing the Nearest Young Moving Groups

McCarthy, Kyle 01 January 2015 (has links)
Moving groups are associations of stars which originated from the same star forming region. These groups are typically young (< 200 Myr) since they have not dissipated into the galactic field population. Over the last 15 years, roughly 10 such moving groups have been found with distances < 150 pc (7 with distances < 100 pc), each with a unique velocity and position. This work first investigates the likelihood to resolve star from two moving groups (AB Doradus and Beta Pictoris) using high spacial resolution optical interferrometry and found 5 AB Doradus stars and 1 Beta Pictoris star with declinations > -30 could be spacially resolved. To more deeply characterize individual groups, we used the 2.7m telescope at the McDonald Observatory to observe 10 proposed AB Doradus stars and 5 proposed Octans-Near stars (3 probable members, 2 possible) with high resolution (R ~60,000) optical spectroscopy. Each group is characterized in three ways: (1) Chemical analysis to determine the homogeneity among members, (2) Kinematic traceback to determine the origin, and (3) Isochrone fitting to determine the age. We find the 8 stars in our AB Doradus sample are chemically homogeneous with [M/H] = -0.03 ± 0.06 dex, traceback to an age of 125 Myr, and the stars in this mass range are on the main sequence. The two deviants are a metal rich, potentially younger member and a metal poor, young star likely not associated with AB Doradus. In our Octans-Near sample, we find the 3 probable members have [M/H] = -0.06 ± 0.11, the stars do not trace back to a common origin, and the probable members are on the main sequence. In addition to these tests, we found that the probable members are slightly more lithium depleted than the Pleiades, implying an age between 125 and 200 Myr. Finally, we investigate systematic trends in fundamental stellar parameters from the use of different techniques. Preliminary results find differences in temperatures between interferrometric and spectroscopic techniques to be a function of temperature with a interferrometric temperatures being cooler by an average of 36 ± 115 K. We also calculated the chemical abundances as a function of condensation temperature for our moving group sample and predict 2 stars in AB Doradus could represent the initial star forming environment and discuss the implications for planet hosting stars in nearby moving groups. This updated characterization technique allows for a deeper understanding of the moving group environment. As future, high precision instruments emerge in astronomy (Jame Webb Space Telescope, GAIA, 30m class telescopes), moving groups are ideal targets since these associations will help us understand star forming regions, stellar evolution at young ages, constrain stellar evolutionary models, and identify planetary formation and evolution mechanisms.

Page generated in 0.175 seconds