• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alpha Element Abundances in Halo Stars

Reinhard, Michael 29 August 2022 (has links)
No description available.
2

Determination of Stellar Parameters through the Use of All Available Flux Data and Model Spectral Energy Distributions

Ekanayake, Gemunu 01 January 2017 (has links)
Basic stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity plays a vital role in the characterization of various stellar populations in the Milky Way. The Stellar parameters can be measured by adopting one or more observational techniques, such as spectroscopy, photometry, interferometry, etc. Finding new and innovative ways to combine these observational data to derive reliable stellar parameters and to use them to characterize some of the stellar populations in our galaxy is the main goal of this thesis. Our initial work, based on the spectroscopic and photometric data available in literature, had the objective of calibrating the stellar parameters from a range of available flux observations from far-UV to far-IR. Much effort has been made to estimate probability distributions of the stellar parameters using Bayesian inference, rather than point estimates. We applied these techniques to blue straggler stars (BSSs) in the galactic field, which are thought to be a product of mass transfer mechanism associated with binary stars. Using photometry available in SDSS and GALEX surveys we identified 85 stars with UV excess in their spectral energy distribution (SED) : indication of a hot white dwarf companion to BSS. To determine the parameter distributions (mass, temperature and age) of the WD companions, we developed algorithms that could fit binary model atmospheres to the observed SED. The WD mass distribution peaks at 0.4M , suggests the primary formation channel of field BSSs is Case-B mass transfer, i.e. when the donor star is in red giant phase of its evolution. Based on stellar evolutionary models, we estimate the lower limit of binary mass transfer efficiency β ~ 0.5. Next, we have focused on the Canis Major overdensity (CMO), a substructure located at low galactic latitude in the Milky Way, where the interstellar reddening (E(B-V )) due to dust is significantly high. In this study we estimated the reddening, metallicity distribution and kinematics of the CMO using a sample of red clump (RC) stars. The averageE(B-V)(~0.19)is consistent with that measured from Schlegel maps (Schlegal et.al. 1998). The overall metallicity and kinematic distribution is in agreement with the previous estimates of the disk stars. But the measured mean alpha element abundance is relatively larger with respect to the expected value for disk stars.
3

Characterizing the Nearest Young Moving Groups

McCarthy, Kyle 01 January 2015 (has links)
Moving groups are associations of stars which originated from the same star forming region. These groups are typically young (< 200 Myr) since they have not dissipated into the galactic field population. Over the last 15 years, roughly 10 such moving groups have been found with distances < 150 pc (7 with distances < 100 pc), each with a unique velocity and position. This work first investigates the likelihood to resolve star from two moving groups (AB Doradus and Beta Pictoris) using high spacial resolution optical interferrometry and found 5 AB Doradus stars and 1 Beta Pictoris star with declinations > -30 could be spacially resolved. To more deeply characterize individual groups, we used the 2.7m telescope at the McDonald Observatory to observe 10 proposed AB Doradus stars and 5 proposed Octans-Near stars (3 probable members, 2 possible) with high resolution (R ~60,000) optical spectroscopy. Each group is characterized in three ways: (1) Chemical analysis to determine the homogeneity among members, (2) Kinematic traceback to determine the origin, and (3) Isochrone fitting to determine the age. We find the 8 stars in our AB Doradus sample are chemically homogeneous with [M/H] = -0.03 ± 0.06 dex, traceback to an age of 125 Myr, and the stars in this mass range are on the main sequence. The two deviants are a metal rich, potentially younger member and a metal poor, young star likely not associated with AB Doradus. In our Octans-Near sample, we find the 3 probable members have [M/H] = -0.06 ± 0.11, the stars do not trace back to a common origin, and the probable members are on the main sequence. In addition to these tests, we found that the probable members are slightly more lithium depleted than the Pleiades, implying an age between 125 and 200 Myr. Finally, we investigate systematic trends in fundamental stellar parameters from the use of different techniques. Preliminary results find differences in temperatures between interferrometric and spectroscopic techniques to be a function of temperature with a interferrometric temperatures being cooler by an average of 36 ± 115 K. We also calculated the chemical abundances as a function of condensation temperature for our moving group sample and predict 2 stars in AB Doradus could represent the initial star forming environment and discuss the implications for planet hosting stars in nearby moving groups. This updated characterization technique allows for a deeper understanding of the moving group environment. As future, high precision instruments emerge in astronomy (Jame Webb Space Telescope, GAIA, 30m class telescopes), moving groups are ideal targets since these associations will help us understand star forming regions, stellar evolution at young ages, constrain stellar evolutionary models, and identify planetary formation and evolution mechanisms.
4

Caractérisation interférométrique de la relation brillance de surface-couleur des binaires à éclipse et étalonnage des échelles de distance dans l'univers / Interferometric characterization of the surface brightness-color relation of eclipsing binary and calibration of distance scales in the universe

Challouf, Mounir 28 May 2015 (has links)
La mesure des distances aux galaxies proches de notre Voie Lactée a révolutionné notre compréhension de l'échelle de distance et a fourni la preuve de l'expansion de l'univers. Notamment les distances aux Petit et Grand Nuages de Magellan sont deux échelons essentiels de l'échelle des distances cosmiques. De nombreuses méthodes indépendantes (comme celle des RR Lyrae, des Céphéides ou des étoiles Red clump) ont été utilisées pour déterminer ces distances. Le but de mon travail de thèse est d'améliorer notre compréhension de la relation BSC grâce à l'interférométrie optique. Pour cela, j'ai utilisé l'instrument VEGA installé sur l'interféromètre CHARA. Cet instrument fonctionne dans le visible et bénéficie de la plus longue base du monde. VEGA a une résolution spatiale de 0.3 mas, ce qui en fait un outil idéal pour une détermination précise des diamètres des étoiles. Dans un premier temps j'ai déterminé le diamètre de huit étoiles de type OBA avec une précision moyenne de 1.5%. Ensuite j'ai combiné ces diamètres avec d'autres mesures collectées dans la littérature pour ainsi donner une nouvelle relation BSC pour ce type d'étoiles. Dans un second temps, une étude théorique de l'impact de rotation sur la relation BSC a été faite pour comprendre les effets physiques influant sur la précision de cette relation de manière à compenser la dispersion existant actuellement et ce dans le but d'améliorer encore la précision sur les distances extragalactiques. / Measuring distances separating our own Galaxy from nearby ones revolutionized our understanding of the distance scale and provided the evidence for the expansion of the universe. The distances to the Small and Large Magellanic Clouds are critical steps of the cosmic distance ladder, and they have been determined using numerous independent methods (as, RR Lyrae stars, Cepheids and "red clump" stars). The aim of my thesis work is to improve our understanding of the Surface Brightness-Color relation (SBC) using optical interferometry. For this, we use the interferometer VEGA on CHARA. This instrument operates in the visible and benefits from the baselines of the CHARA interferometer. It has a spatial resolution of 0.3 mas, which makes it an ideal tool to determine diameters of stars. At first I determined the diameter of eight OBA-type stars with an average accuracy of 1.5%. Then I combined these diameters with others collected from the literature, to determine a new SBC relation for this type of stars. In a second step, a theoretical study of the impact of the rotation on the SBC relation was made to understand the physical effects affecting the accuracy of this relation and suppress the currently existing dispersion in order to further improve the accuracy of extragalactic distances.
5

Low-mass stars as tracers of the milky way populations : investigating the effects of metallicity in cool atmosphere / Les étoiles de petite masse comme traceurs des populations de la voie lactée : étude des effets de la métallicité dans les atmosphères froides

Rajpurohit, Arvind Singh 13 September 2013 (has links)
Les étoiles de petite masse (naines M) forment la composante stellaire dominante de notre galaxie et contribuent à la majeure partie de la matière baryonique dans la galaxie. Notre compréhension de la galaxie repose donc sur la connaissance de cette composante peu lumineuse. Par ailleurs, un nombre grandissant d’exoplanètes sont découverte autour de naines M, y compris des super-terres. L’étude des naines M a ainsi des implications importantes sur la physique stellaire, permettant de comprendre les processus en jeu dans ces atmosphères froides. Ces astres restent cependant peu connus du fait de leur faible luminosité intrinsèque. La description de ces étoiles nécessite une validation empirique fort, notamment en ce qui concerne les effets de l’abondance chimique sur la physique des atmosphères froides.Le but de cette thèse est de déterminer les paramètres fondamentaux des naines M et de tester les modèles d’atmosphères d’étoiles froides.Dans la première partie nous comparons des spectres calibrés dans le visible et l’infrarouge des composantes de système triple LHS 1070 avec des spectres synthétiques. Cette étude permet d’améliorer notre compréhension de la formation de la poussière dans les atmosphères très froides. Ce travail est étendu à un échantillon de naines M et permet de déterminer l’échelle de température des naines M. La seconde partie présente l’analyse des spectres à haute résolution de 21 naines M de faible métallicité (sous naines). Nous analysons en détail les signature moléculaires et atomiques dans le spectre. La comparaison avec des spectres synthétiques permet de mesurer les paramètres stellaires des étoiles et de déterminer avec précision leur métallicité. Ce travail doit initier des recherches futures. En particulier nous voulons étendre cette étude dans le domaine proche-infrarouge pour s’assurer que les résultats obtenus sont cohérents du domaine optique jusqu’à l’infrarouge proche. / Very Low-Mass stars (M dwarfs) are an important source of information for probing the lowmass end of the main sequence, down to the hydrogen burning limit. They are the dominantstellar component of the Galaxy and make up the majority of baryonic matter in the Galaxy.Moreover, an increasing number of M dwarfs are now known to host exoplanets, includingsuper-Earth exoplanets. The determination of accurate fundamental parameters for M dwarfshas therefore relevant implications for both stellar and Galactic astronomy as well as planetology.Despite their large number in the Galaxy, M dwarfs remain elusive objects and themodelling of their photosphere has long remained a challenge (molecular opacities, dust cloudformation). The description of these stars therefore need a strong empirical basis, or validation.In particular, the effect of metallicity on the physics of cool atmospheres are still poorly known,even for early-type M-dwarfs.[...]
6

Exploring S stars: stellar parameters, abundances and constraints on the s-process from a new grid of model atmospheres

Neyskens, Pieter 08 January 2014 (has links)
More than 80% of the stars in the Universe are expected to have initial masses below eight to ten times the mass of our sun. These low mass stars, including our sun, become cool red giants during one of the final evolutionary stages of their life: the Asymptotic Giant Branch (or AGB) phase. AGB stars are among the main producers of carbon and heavy (s-process) elements in the Universe. These elements are synthesized inside the star and mixed to the stellar atmosphere where stellar winds are responsible for the loss of more than 50% of the stellar mass, hence, AGB stars are strong polluters of the interstellar medium. The ejected material can clump together into dusty particles which may serve as ingredients for the birth of new stars and planets. When most of the AGB stellar envelope is lost, the AGB star stops releasing nuclear energy from interior processes and swaps its giant face for a planetary nebulae look, whereafter it fades away as a white dwarf.<p><p>The dredge-up of carbon and s-process elements into the AGB atmosphere causes an important chemical anomaly among them: initial oxygen-rich stars (M stars) are transformed into carbon-rich stars (C stars). As a consequence, a group of oxygen-rich AGB stars exists which makes the transition between M and C stars. These transition stars are classified as S.<p><p>Although AGB stars are identified as producers of heavy elements, their nucleosynthesis and mixing processes are weakly constrained due to large uncertainties on their estimated temperature, gravity and chemical composition. Stronger constraints on the atmospheric parameter space, hence interior processes, of AGB stars can be obtained by investigating the atmosphere of S stars. Since they are transition objects on the AGB, they trace the rise of the s-process. S stars are less numerous than C stars, but their optical spectra are brighter making it easier to identify atomic and molecular lines. Therefore, S stars belong to the most interesting objects along the AGB to perform this task.<p><p><p><p>From a practical point of view, the spectra of S stars are extremely difficult to study since they are dominated by different, overlapping molecular bands, and the spectral shape may vary strongly from star to star due to their transition status. Therefore, tailored model atmospheres for S stars are of utmost importance to understand the spectroscopic, and even photometric, changes in terms of variations in the atmospheric parameters. A comparison between the models and observations aims not only at constraining the atmospheric parameter space of S stars, it will also test the reliability of 1D state-of-the-art model atmospheres for such complex stars.<p><p><p><p>From an evolutionary point of view, the S-star family is contaminated with stars who gained their atmospheric enrichment in heavy elements from a companion star. Evidences were found that these binary S stars are not at all located on the AGB, hence, they are labelled as extrinsic S stars while S stars on the AGB are labelled as intrinsic. The difference in evolutionary stages between intrinsic and extrinsic S stars was already found 20 years ago, however, a separation in terms of surface temperature, gravity and chemical composition is not well-established due to the lack of S-star model atmospheres. Such a distinction in atmospheric parameters will facilitate the discovery of these intruders and even help to calibrate stellar evolutionary models of single and binary stars.<p>To achieve these goals, the first step consists in the construction of a grid of model atmospheres for S stars. The grid will be used to quantify the influence of atmospheric parameters on the model structure and emergent flux. These results will be analyzed to derive precise atmospheric parameters of observed S stars, using a set of well-defined photometric and spectroscopic indices. Once the best model atmosphere has been selected for all observed S stars, their atmospheric parameters will be discussed in view of their evolutionary stage. The best-fitting model atmosphere will also be used to derive abundances from spectral syntheses. The abundance profiles are compared with stellar evolution model prediction to constrain nucleosynthesis and mixing processes inside S stars. Derived abundances of unstable elements will be used to estimate, for the first time, the age of AGB stars. Finally, their abundance profile will be discussed as a function of their time spent on the AGB. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0996 seconds