• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A search for multi-planet systems

Wittenmyer, Robert Andrew, 1976- 07 September 2012 (has links)
I report the results of a three-year intensive radial-velocity survey of 22 planet-host stars in search of the low-amplitude (K ~5-10 m s⁻¹) signals from additional planets which may be "hiding" in the residuals of the known planet orbital solution. On average, more than 40 radial-velocity observations were obtained for each target using the High-Resolution Spectrograph at the 9.2m Hobby-Eberly Telescope (HET). These high-precision data can be used to rule out additional planets in some of these systems to a detection limit of M sin i ~10-20 Earth masses at a = 0:05 AU. Jupiter-mass planets can be excluded at the 99% level for orbital separations a < 2 AU. No additional planets are evident, and our data do not confirm the planets HD 20367b, HD 74156d, and 47 UMa c. Test particle simulations of these systems with the SWIFT N-body integrator reveal the regions where additional planets could reside in stable orbits. Further simulations with Saturn-mass bodies in these regions are also performed. We note a lack of short-period giant planets in any of these 22 systems, despite dynamical feasibility. The frequency of inner giant planets may be much lower than what was expected based on early discoveries of such objects in systems containing jovian-mass planets. Terrestrial-mass planets may be present in these systems but as yet undetectable. These results suggest that planet formation and migration processes do not favor systems containing both "hot" and "cold" Jupiters. Hence, as detection methods become sensitive to terrestrial-mass planets, systems with architectures like our own Solar system may yet be commonplace. / text
2

A search for multi-planet systems

Wittenmyer, Robert Andrew, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
3

Statistical analyses of extrasolar planets and other close companions to nearby stars.

Grether, Daniel Andrew, Physics, Faculty of Science, UNSW January 2006 (has links)
We analyse the properties of extrasolar planets, other close companions and their hosts. We start by identifying a sample of the detected extrasolar planets that is minimally affected by the selection effects of the Doppler detection method. With a simple analysis we quantify trends in the surface density of this sample in the Msini-period plane. A modest extrapolation of these trends puts Jupiter in the most densely occupied region of this parameter space, thus suggesting that Jupiter is a typical massive planet rather than an outlier. We then examine what fraction of Sun-like (~ FGK) stars have planets. We find that at least ~25% of stars possess planets when we limit our analysis to stars that have been monitored the longest and whose low surface activity allow the most precise radial velocity measurements. The true fraction of stars with planets may be as large as ~100%. We construct a sample of nearby Sun-like stars with close companions (period < 5 years). By using the same sample to extract the relative numbers of stellar, brown dwarf and planetary companions, we verify the existence of a very dry brown dwarf desert and describe it quantitatively. Approximately 16% of Sun-like stars have close companions more massive than Jupiter: 11% +- 3% are stellar, <1% are brown dwarf and 5% +- 2% are giant planets. A comparison with the initial mass function of individual stars and free-floating brown dwarfs, suggests either a different spectrum of gravitational fragmentation in the formation environment or post-formation migratory processes disinclined to leave brown dwarfs in close orbits. Finally we examine the relationship between the frequency of close companions and the metallicity of their Sun-like hosts. We confirm and quantify a ~4 sigma positive correlation between host metallicity and planetary companions. In contrast we find a ~2 sigma anti-correlation between host metallicity and the presence of a stellar companion. Upon dividing our sample into FG and K sub-samples, we find a negligible anti-correlation in the FG sub-sample and a ~3 sigma anti-correlation in the K sub-sample. A kinematic analysis suggests that this anti-correlation is produced by a combination of low-metallicity, high-binarity thick disk stars and higher-metallicity, lower-binarity thin disk stars.
4

Substellar companions to white dwarves

Mullally, Fergal Robert, 1979- 28 August 2008 (has links)
We search for planets and brown dwarves around white dwarves (WDs). Finding extra-solar planets is the first step toward establishing the existence and abundance of life in the Universe. The low mass and luminosity of WDs make them ideal stars to search for low mass companion objects. Theoretical predictions generally agree that a star will consume and destroy close-in, low mass planets as it ascends the red giant and asymptotic giant branch evolutionary tracks, but larger mass objects and those further out will survive. The matter ejected from the star as it evolves into a white dwarf may also be accreted onto daughter planets, or may coalesce into a disk from which planets can form. We employ two techniques to search for planets and brown dwarves (BDs) around WDs. A subset of pulsating white dwarf stars have a pulsational stability that rivals pulsars and atomic clocks. When a planet is in orbit around a such a star the orbital motion of the star around the centre of mass is detectable as a change in arrival times of the otherwise stable pulsations. We search for, and find, a sample of suitable pulsators, monitor them for between three and four years, and place limits on companions by constraining the variation consistent with a 2.4M[subscript J] planet in a 4.6 year orbit. We also observe a large sample of WDs to search for a mid-infrared excess caused by the presence of sub-stellar companions. We present evidence for a potential binary system consisting of a WD and a BD on the basis of an observed excess flux at near and mind-infrared wavelengths. We also place limits on the presence of planetary mass companions around those stars and compare our results to predictions of planetary survival theories. Our findings do not support suggestions of planet formation or accretion of extra mass during stellar death.
5

The chemically peculiar nature of stars with planets : searching for signatures of accretion in stellar photospheres /

Laws, Christopher S., January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 136-144).
6

Substellar companions to white dwarves

Mullally, Fergal Robert, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
7

Propriedades f?sicas de planetas extrasolares

Nascimento, Sanzia Alves do 22 April 2008 (has links)
Made available in DSpace on 2015-03-03T15:15:22Z (GMT). No. of bitstreams: 1 SanziaAN.pdf: 964619 bytes, checksum: 25b161330259b5777dcaa8cf03c1242b (MD5) Previous issue date: 2008-04-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / ROTATION is one the most important aspects to be observed in stellar astrophysics. Here we investigate that particularly in stars with planets. This physical parameter supplies information about the distribution of angular momentum in the planetary system, as well as its role on the control of dierent phenomena, including coronal and cromospherical emission and on the ones due of tidal effects. In spite of the continuous solid advances made on the study of the characteristics and properties of planet host stars, the main features of their rotational behavior is are not well established yet. In this context, the present work brings an unprecedented study about the rotation and angular momentum of planet-harbouring stars, as well as the correlation between rotation and stellar and planetary physical properties. Our analysis is based on a sample of 232 extrasolar planets, orbiting 196 stars of dierent luminosity classes and spectral types. In addition to the study of their rotational behavior, the behavior of the physical properties of stars and their orbiting planets was also analyzed, including stellar mass and metallicity, as well as the planetary orbital parameters. As main results we can underline that the rotation of stars with planets present two clear features: stars with Tef lower than about 6000 K have slower rotations, while among stars with Tef > 6000 K we and moderate and fast rotations, though there are a few exceptions. We also show that stars with planets follow mostly the Krafts law, namely < J > / v rot. In this same idea we show that the rotation versus age relation of stars with planets follows, at least qualitatively, the Skumanich and Pace & Pasquini laws. The relation rotation versus orbital period also points for a very interesting result, with planet-harbouring stars with shorter orbital periods present rather enhanced rotation / ROTA??O ? um dos importantes aspectos a ser observado na astrof?sica estelar. Por isto, neste trabalho, investigamos este par?metro no estudo das estrelas hospedeiras de planetas. Par?metro f?sico este que fornece informa??o sobre a distribui??o do momentum angular dos sistemas planet?rios, bem como sobre o seu papel nos mais diferentes fen?menos, incluindo emiss?o cromosf?rica e coronal e sobre aqueles decorrentes de efeitos de mar?. Apesar dos cont?nuos avan?os feitos no estudo das caracter?sticas e das propriedades destes objetos, as principais caracter?sticas de seu comportamento rotat?rio ainda n?o est?o bem estabelecidas. Neste contexto, o presente trabalho traz um estudo pioneiro sobre a rota??o e o momentum angular das estrelas hospedeiras de planetas, bem como sobre a correla??o entre rota??o e par?metros f?sicos estelares e planet?rios. Nossa an?lise ? baseada em uma amostra de 232 planetas extrasolares, orbitando 196 estrelas de diferentes classes de luminosidade e tipos espectrais. Al?m do estudo do comportamento rotacional dessas estrelas, re-visitamos o comportamento das propriedades f?sicas destas estrelas e de seus planetas, incluindo a massa estelar e a metalicidade, bem como os par?metros orbitais planet?rios. Como resultados principais, podemos sublinhar que a rota??o das estrelas com planetas apresenta duas claras caracter?sticas: estrelas com Tef inferiores aproximadamente 6000 K possuem rota??es mais baixas, enquanto que entre aquelas com Tef > 6000 K encontramos rota??es modv eradas e altas, embora algumas exce??es. N?s mostramos tamb?m que as estrelas com planetas seguem, em sua maioria, a lei do Kraft, a saber < J > / v rot. Nesta mesma linha n?s mostramos que a rela??o rota??o versus idade das estrelas com planetas segue, ao menos qualitativamente, como qualquer outra estrela de campo ou de aglomerado, a lei de Skumanich e de Pace & Pasquini. Um resultado interessante a ser destacado ? a rela??o rota??o versus per?odo orbital, que aponta para uma tend?ncia de que as estrelas que abrigam planetas com per?odo orbital menores apresentam rota??es mais real?adas

Page generated in 0.074 seconds