Spelling suggestions: "subject:"stat5"" "subject:"stat5b""
1 |
STAT5B AND STAT5 TETRAMERS ARE ESSENTIAL FOR IGE-MEDIATED MAST CELL FUNCTIONKiwanuka, Kasalina N 01 January 2019 (has links)
Signal Transducers and Activators of Transcription (STATs) are latent transcription factors that mediate several cellular responses. This protein family consists of seven members, STAT1 – 6 including two closely related molecules, STAT5a and STAT5b, that show 96% amino acid sequence homology and are critical for lymphoid, myeloid and erythroid cell development and function. Activated STAT proteins dimerize and translocate to the nucleus, where they bind to high-affinity DNA motifs to modulate gene expression. We recently identified STAT5b as the critical regulator of IgE-mediated cytokine production in mast cells. STAT5b knockout (KO) cells show decreased sensitivity to IgE-mediated passive systemic anaphylaxis accompanied with decreased production of IL-6 and IL-13 compared to wild type counterparts. Interestingly, STAT5b KO mice demonstrated elevated levels of serum IgE but a normal response to histamine-mediated passive systemic anaphylaxis. The current work demonstrates that STAT5b regulates mast cell function both in vivo and in vitro.
Additionally, activated STAT proteins can also form tetramers through an N-terminal domain-mediated oligomerization process when bound to low-affinity tandem motifs. Dr. Warren Leonard’s laboratory generated STAT5a-STAT5b double knock-in (DKI) mice in which STAT5 proteins are phosphorylated and can form dimers but not tetramers. We have now found that bone marrow-derived mast cells from STAT5 DKI mice are defective in IgE-induced cytokine and chemokine production and exhibit defective stem cell factor (SCF)-induced migration and survival responses in vitro. Similarly, IgE-mediated passive systemic anaphylaxis is decreased in STAT5 DKI mice. These data indicate that Stat5 tetramers are critical for some aspects of mast cell function in allergic and inflammatory disease.
|
Page generated in 0.0301 seconds