• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 86
  • 28
  • 14
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 351
  • 351
  • 116
  • 97
  • 80
  • 78
  • 75
  • 75
  • 68
  • 65
  • 64
  • 61
  • 41
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Improved measurement placement and topology processing in power system state estimation

Wu, Yang 02 June 2009 (has links)
State estimation plays an important role in modern power system energy management systems. The network observability is a pre-requisite for the state estimation solution. Topological error in the network may cause the state estimation results to be seriously biased. This dissertation studies new schemes to improve the conventional state estimation in the above aspects. A new algorithm for cost minimization in the measurement placement design is proposed in this dissertation. The new algorithm reduces the cost of measurement installation and retains the network observability. Two levels of measurement place- ment designs are obtained: the basic level design guarantees the whole network to be observable using only the voltage magnitude measurement and the branch power flow measurements. The advanced level design keeps the network observable under certain contingencies. To preserve as many substation measurements as possible and maintain the net-work observability, an advanced network topology processor is introduced. A new method - the dynamic utilization of substation measurements (DUSM) - is presented. Instead of seeking the installation of new measurements in the system, this method dynamically calculates state estimation measurement values by applying the current law that regulates different measurement values implicitly. Its processing is at the substation level and, therefore, can be implemented independently in substations. This dissertation also presents a new way to verify circuit breaker status and identify topological errors. The new method improves topological error detection using the method of DUSM. It can be seen that without modifying the state estimator, the status of a circuit breaker may still be verified even without direct power flow measurements. Inferred measurements, calculated by DUSM, are used to help decide the CB status. To reduce future software code maintenance and to provide standard data ex- changes, the newly developed functions were developed in Java, with XML format input/output support. The effectiveness and applicability of these functions are ver-ified by various test cases.
92

A non-continuum approach to obtain a macroscopic model for the flow of traffic

Tyagi, Vipin 17 September 2007 (has links)
Existing macroscopic models for the flow of traffic treat traffic as a continuum or employ techniques similar to those used in the kinetic theory of gases. Spurious two- way propagation of disturbances that are physically unacceptable are predicted by continuum models for the flow of traffic. The number of vehicles in a typical section of a freeway does not justify traffic being treated as a continuum. It is also important to recognize that the basic premises of kinetic theory are not appropriate for the flow of traffic. A model for the flow of traffic that does not treat traffic as a continuum or use notions from kinetic theory is developed in this dissertation and corroborated with traffic data collected from the sensors deployed on US 183 freeway in Austin, Texas, USA. The flow of traffic exhibits distinct characteristics under different conditions and reflects the congestion during peak hours and relatively free motion during off-peak hours. This requires one to use different governing equations to describe the diverse traffic characteristics, namely the different traffic flow regimes of response. Such an approach has been followed in this dissertation. An observer based on extended Kalman filtering technique has been utilized for the purpose of estimating the traffic state. Historical traffic data has been used for model calibration. The estimated model parameters have consistent values for different traffic conditions. These esti- mated model parameters are then subsequently used for estimation of the state of traffic in real-time. A short-term traffic state forecasting approach, based on the non-continuum traffic model, which incorporates weighted historical and real-time traffic information has been developed. A methodology for predicting trip travel time based on this approach has also been developed. Ten and fifteen minute predictions for traffic state and trip travel time seem to agree well with the traffic data collected on US 183.
93

Mechanism of fluoride-based etch and clean processes

Pande, Ashish Arunkumar 20 January 2011 (has links)
Fluoride-containing solutions are widely used to etch silicon dioxide-based films. A critical issue in integrated circuit (IC) and microelectromechanical systems (MEMS) fabrication is achievement of adequate selectivity during the etching of different film materials when they are present in different areas on a device or in a stack. The use of organic fluoride-based salts in aqueous/organic solvent solutions can yield etch selectivities <1.9 for thermally-grown silicon dioxide relative to borophosphosilicate glass films, and thus may also obviate the need to add surfactants to the etch solutions to realize uniform etching. Etch studies with aqueous-organic fluoride salt-based solutions also offer insight into the etch mechanism of these materials. Specifically, the importance of water content in the solutions and of ion solvation in controlling the etch chemistry is described. With respect to fluoride-containing solutions, etching of SiO₂ films using aqueous HF-based chemistries is widely used in IC and MEMS industries. To precisely control film loss during cleaning or etching processes, good control over the contact time between the liquid (wet) chemistry and the substrate is necessary. An integrated wet etch and dry reactor system has been designed and fabricated by studying various geometrical configurations using computational fluid dynamics (CFD) simulations incorporating reaction kinetics from laboratory data and previously published information. The effect of various process parameters such as HF concentration, flow rate, and flow velocity on the etch rates and uniformity of thermally-grown silicon dioxide and borophosphosilicate glass films was studied. Simulations agree with experiments within experimental error. This reactor can also be used to wet etch/clean and dry other films in addition to SiO₂-based films using aggressive chemistries as well as aqueous HF under widely different process conditions. A spectroscopic reflectometry technique has been implemented in-situ in this custom fabricated reactor to monitor the thickness and etch rate in wet etching environments. The advantages of this technique over spectroscopic ellipsometry in specific situations are discussed. A first principles model has been developed to analyze the reflectometry data. The model has been validated on a large number of previously published studies. The match between experimental and simulated thickness is good, with the difference ~ 5 nm. In-situ thickness and etch rate have been estimated using Recursive Least Squares (RLS), Extended Kalman Filter (EKF) and modified Moving Horizon Estimator (mMHE) analyses applied to spectroscopic reflectometry using multiple wavelengths with ZnO employed as a model film. The initial guess for EKF and mMHE has been obtained from a CFD model. It has been shown that both EKF and mMHE are less oscillatory than RLS/LS in the prediction of thickness and ER and more robust when a smaller number of wavelengths are used, in addition, the computational time for EKF is less than that of mMHE/RLS. For no restrictions on computational requirements, LS should be the method of choice whereas in the case of faster etching systems, with the availability of a better process model, EKF should be starting point. The choice of algorithm is thus based on sampling rate for data collection, process model uncertainty and the number of wavelengths required.
94

Examining differential drag control in a full system simulation

Lum, Annie Megan 15 February 2012 (has links)
Differential drag controllers have been examined in the context of a full system simulation of a target/chaser pair of spacecraft in low Earth orbit. An Extended Kalman Filter has been designed to process measurement sets from GPS receivers on the target and chaser spacecraft. The estimated state from the Kalman Filter is used in a differential drag control algorithm to determine the appropriate control action. Modifications are made to the standard differential drag control algorithms to reduce unnecessary actuations in the presence of errors in the dynamic modeling, control actuation, and incoming measurements. Detailed explanations of the algorithms, dynamic models, and derivations for both the Kalman Filter and the differential drag control laws are presented. Multiple test cases are used to validate the controller performance under a variety of initial conditions. In these simulations, the differential drag control algorithms successfully maneuver the chaser spacecraft from the initial conditions to a final state with instantaneous time-average position (relative to the target spacecraft) of not more than 10 meters in the radial and in-track directions. Modifications to the standard control algorithms ensure that extraneous control actuations are minimized. An optimization algorithm is used determine the time-optimal differential drag control history, and the results are compared to the standard control logic and modified control logic. Based on the optimization results, it is recommended that a system employing differential drag control (especially those with limited computational resources) should use the modified control logic, as it provides a standardized methodology that can be followed in any mission. / text
95

Traffic State Estimation Integrating Bluetooth Adapter and Passive Infrared Sensor

Ge, Yongfeng Unknown Date
No description available.
96

Characterization of Quantum States of Light

Adamson, Robert B. A. 09 April 2010 (has links)
I present a series of experimental and theoretical advances in the field of quantum state estimation. Techniques for measuring the quantum state of light that were originally developed for distinguishable photons fail when the particles are indistinguishable. I develop new methods for handling indistinguishability in quantum state estimation. The technique I present provides the first complete description of states of experimentally indistinguishable photons. It allows me to derive the number of parameters needed to describe an arbitrary state and to quantify distinguishability. I demonstrate its use by applying it to the measurement of the quantum polarization state of two and three-photon systems. State characterization is optimal when no redundant information is collected about the state of the system. I present the results of the first optimal characterization of the polarization state of a two-photon system. I show an improved estimation power over the previous state of the art. I also show how the optimal measurements lead to a new description of the quantum state in terms of a discrete Wigner function. It is often desirable to describe the quantum state of a system in terms of properties that are not themselves quantum-mechanical observables. This usually requires a full characterization of the state followed by a calculation of the properties from the parameters characterizing the state. I apply a technique that allows such properties to be determined directly, without a full characterization of the state. This allows one such property, the purity, to be determined in a single measurement, regardless of the size of the system, while the conventional method of determining purity requires a number of measurements that scales exponentially with the system size.
97

Characterization of Quantum States of Light

Adamson, Robert B. A. 09 April 2010 (has links)
I present a series of experimental and theoretical advances in the field of quantum state estimation. Techniques for measuring the quantum state of light that were originally developed for distinguishable photons fail when the particles are indistinguishable. I develop new methods for handling indistinguishability in quantum state estimation. The technique I present provides the first complete description of states of experimentally indistinguishable photons. It allows me to derive the number of parameters needed to describe an arbitrary state and to quantify distinguishability. I demonstrate its use by applying it to the measurement of the quantum polarization state of two and three-photon systems. State characterization is optimal when no redundant information is collected about the state of the system. I present the results of the first optimal characterization of the polarization state of a two-photon system. I show an improved estimation power over the previous state of the art. I also show how the optimal measurements lead to a new description of the quantum state in terms of a discrete Wigner function. It is often desirable to describe the quantum state of a system in terms of properties that are not themselves quantum-mechanical observables. This usually requires a full characterization of the state followed by a calculation of the properties from the parameters characterizing the state. I apply a technique that allows such properties to be determined directly, without a full characterization of the state. This allows one such property, the purity, to be determined in a single measurement, regardless of the size of the system, while the conventional method of determining purity requires a number of measurements that scales exponentially with the system size.
98

Model enhancements for state estimation in electric power systems

Hansen, Charles William 12 1900 (has links)
No description available.
99

TIME CONDITION SYSTEMS

Thumu, Prashanth 01 January 2005 (has links)
The current thesis considers the issue of state estimation of condition systems, a form of petri net with signal inputs and outputs. In previous research the problem of unobservability due to progress confusion was identified, in the presence of which state estimation is not possible. Here we introduce the notion of Time Condition Systems", a class of condition systems that uses timing information from condition models to overcome state estimation problem caused by progress confusion. To make use of the timing information in the plant model, a procedure called Exploded Time Plant" is synthesized. This procedure makes the plant model an observable model. It is proved that this procedure does not alter the structural and temporal behavior of the plant model and the plant maintains its integrity. The time plant(s) and the corresponding Exploded time plant(s) are subsequently used to develop observer(s) and controller(s) for Time condition models.
100

Autonomous state estimation and its application to the autonomous operation of the distribution system with distributed generations

Choi, Sungyun 13 January 2014 (has links)
The objective of this thesis is to propose guidelines for advanced operation, control, and protection of the restructured distribution system by designing the architecture and functionality for autonomous operation of the distribution system with DGs. The proposed architecture consists of (1) autonomous state estimation and (2) applications that enable autonomous operation; in particular, three applications are discussed: setting-less component protection, instant-by-instant management, and short-term operational planning. Key elements of the proposed approach have been verified: (1) the proposed autonomous state estimation has been experimentally tested using laboratory test systems and (2) the feasibility of the setting-less component protection has been tested with numerical simulations.

Page generated in 0.0892 seconds