• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Random homogenization of p-Laplacian with obstacles on perforated domain and related topics

Tang, Lan, 1980- 09 June 2011 (has links)
Abstract not available. / text
2

Sur quelques problèmes non-supervisés impliquant des séries temporelles hautement dèpendantes

Khaleghi, Azadeh 18 November 2013 (has links) (PDF)
Cette thèse est consacrée à l'analyse théorique de problèmes non supervisés impliquant des séries temporelles hautement dépendantes. Plus particulièrement, nous abordons les deux problèmes fondamentaux que sont le problème d'estimation des points de rupture et le partitionnement de séries temporelles. Ces problèmes sont abordés dans un cadre extrêmement général oùles données sont générées par des processus stochastiques ergodiques stationnaires. Il s'agit de l'une des hypothèses les plus faibles en statistiques, comprenant non seulement, les hypothèses de modèles et les hypothèses paramétriques habituelles dans la littérature scientifique, mais aussi des hypothèses classiques d'indépendance, de contraintes sur l'espace mémoire ou encore des hypothèses de mélange. En particulier, aucune restriction n'est faite sur la forme ou la nature des dépendances, de telles sortes que les échantillons peuvent être arbitrairement dépendants. Pour chaque problème abordé, nous proposons de nouvelles méthodes non paramétriques et nous prouvons de plus qu'elles sont, dans ce cadre, asymptotiquement consistantes. Pour l'estimation de points de rupture, la consistance asymptotique se rapporte à la capacité de l'algorithme à produire des estimations des points de rupture qui sont asymptotiquement arbitrairement proches des vrais points de rupture. D'autre part, un algorithme de partitionnement est asymptotiquement consistant si le partitionnement qu'il produit, restreint à chaque lot de séquences, coïncides, à partir d'un certain temps et de manière consistante, avec le partitionnement cible. Nous montrons que les algorithmes proposés sont implémentables efficacement, et nous accompagnons nos résultats théoriques par des évaluations expérimentales. L'analyse statistique dans le cadre stationnaire ergodique est extrêmement difficile. De manière générale, il est prouvé que les vitesses de convergence sont impossibles à obtenir. Dès lors, pour deux échantillons générés indépendamment par des processus ergodiques stationnaires, il est prouvé qu'il est impossible de distinguer le cas où les échantillons sont générés par le même processus de celui où ils sont générés par des processus différents. Ceci implique que des problèmes tels le partitionnement de séries temporelles sans la connaissance du nombre de partitions ou du nombre de points de rupture ne peut admettre de solutions consistantes. En conséquence, une tâche difficile est de découvrir les formulations du problème qui en permettent une résolution dans ce cadre général. La principale contribution de cette thèse est de démontrer (par construction) que malgré ces résultats d'impossibilités théoriques, des formulations naturelles des problèmes considérés existent et admettent des solutions consistantes dans ce cadre général. Ceci inclut la démonstration du fait que le nombre de points de rupture corrects peut être trouvé, sans recourir à des hypothèses plus fortes sur les processus stochastiques. Il en résulte que, dans cette formulation, le problème des points de rupture peut être réduit à du partitionnement de séries temporelles. Les résultats présentés dans ce travail formulent les fondations théoriques pour l'analyse des données séquentielles dans un espace d'applications bien plus large.
3

Joint Source-Channel Coding Reliability Function for Single and Multi-Terminal Communication Systems

Zhong, Yangfan 15 May 2008 (has links)
Traditionally, source coding (data compression) and channel coding (error protection) are performed separately and sequentially, resulting in what we call a tandem (separate) coding system. In practical implementations, however, tandem coding might involve a large delay and a high coding/decoding complexity, since one needs to remove the redundancy in the source coding part and then insert certain redundancy in the channel coding part. On the other hand, joint source-channel coding (JSCC), which coordinates source and channel coding or combines them into a single step, may offer substantial improvements over the tandem coding approach. This thesis deals with the fundamental Shannon-theoretic limits for a variety of communication systems via JSCC. More specifically, we investigate the reliability function (which is the largest rate at which the coding probability of error vanishes exponentially with increasing blocklength) for JSCC for the following discrete-time communication systems: (i) discrete memoryless systems; (ii) discrete memoryless systems with perfect channel feedback; (iii) discrete memoryless systems with source side information; (iv) discrete systems with Markovian memory; (v) continuous-valued (particularly Gaussian) memoryless systems; (vi) discrete asymmetric 2-user source-channel systems. For the above systems, we establish upper and lower bounds for the JSCC reliability function and we analytically compute these bounds. The conditions for which the upper and lower bounds coincide are also provided. We show that the conditions are satisfied for a large class of source-channel systems, and hence exactly determine the reliability function. We next provide a systematic comparison between the JSCC reliability function and the tandem coding reliability function (the reliability function resulting from separate source and channel coding). We show that the JSCC reliability function is substantially larger than the tandem coding reliability function for most cases. In particular, the JSCC reliability function is close to twice as large as the tandem coding reliability function for many source-channel pairs. This exponent gain provides a theoretical underpinning and justification for JSCC design as opposed to the widely used tandem coding method, since JSCC will yield a faster exponential rate of decay for the system error probability and thus provides substantial reductions in complexity and coding/decoding delay for real-world communication systems. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2008-05-13 22:31:56.425

Page generated in 0.1177 seconds