• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 298
  • 43
  • 36
  • 30
  • 20
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 481
  • 481
  • 219
  • 172
  • 74
  • 63
  • 62
  • 51
  • 51
  • 44
  • 43
  • 41
  • 40
  • 39
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Structures in complex systems : Playing dice with networks and books

Bernhardsson, Sebastian January 2009 (has links)
Complex systems are neither perfectly regular nor completely random. They consist of a multitude of players who, in many cases, playtogether in a way that makes their combined strength greater than the sum of their individual achievements. It is often very effective to represent these systems as networks where the actual connections between the players take on a crucial role.Networks exist all around us and are an important part of our world, from the protein machinery inside our cells to social interactions and man-madecommunication systems. Many of these systems have developed over a long period of time and are constantly undergoing changes driven by complicated microscopic events. These events are often too complicated for us to accurately resolve, making the world seem random and unpredictable. There are however ways of using this unpredictability in our favor by replacing the true events by much simpler stochastic rules giving effectively the same outcome. This allows us to capture the macroscopic behavior of the system, to extract important information about the dynamics of the system and learn about the reason for what we observe. Statistical mechanics gives the tools to deal with such large systems driven by underlying random processes under various external constraints, much like how intracellular networks are driven by random mutations under the constraint of natural selection.This similarity makes it interesting to combine the two and to apply some of the tools provided by statistical mechanics on biological systems.In this thesis, several null models are presented, with this view point in mind, to capture and explain different types of structural properties of real biological networks. The most recent major transition in evolution is the development of language, both spoken and written. This thesis also brings up the subject of quantitative linguistics from the eyes of a physicist, here called linguaphysics. Also in this case the data is analyzed with an assumption of an underlying randomness. It is shown that some statistical properties of books, previously thought to be universal, turn out to exhibit author specific size dependencies. A meta book theory is put forward which explains this dependency by describing the writing of a text as pulling a section out of a huge, individual, abstract mother book. / Komplexa system är varken perfekt ordnade eller helt slumpmässiga. De består av en mängd aktörer, som i många fall agerar tillsammans på ett sådant sätt att deras kombinerade styrka är större än deras individuella prestationer. Det är ofta effektivt att representera dessa system som nätverk där de faktiska kopplingarna mellan aktörerna spelar en avgörande roll. Nätverk finns överallt omkring oss och är en viktig del av vår värld , från proteinmaskineriet inne i våra celler till sociala samspel och människotillverkade kommunikationssystem.Många av dessa system har utvecklats under lång tid och genomgår hela tiden förändringar som drivs på av komplicerade småskaliga händelser.Dessa händelser är ofta för komplicerade för oss att noggrant kunna analysera, vilket får vår värld att verka slumpmässig och oförutsägbar. Det finns dock sätt att använda denna oförutsägbarhet till vår fördel genom att byta ut de verkliga händelserna mot mycket enklare regler baserade på sannolikheter, som ger effektivt sett samma utfall. Detta tillåter oss att fånga systemets övergripande uppförande, att utvinna viktig information om systemets dynamik och att få kunskap om anledningen till vad vi observerar. Statistisk mekanik hanterar stora system pådrivna av sådana underliggande slumpmässiga processer under olika restriktioner, på liknande sätt som nätverk inne i celler drivs av slumpmässiga mutationer under restriktionerna från naturligt urval. Denna likhet gör det intressant att kombinera de två och att applicera de verktyg som ges av statistisk mekanik på biologiska system. I denna avhandling presenteras flera nollmodeller som, baserat på detta synsätt, fångar och förklarar olika typer av strukturella egenskaper hos verkliga biologiska nätverk. Den senaste stora evolutionära övergången är utvecklandet av språk, både talat och skrivet. Denna avhandling tar också upp ämnet om kvantitativ linguistik genom en fysikers ögon, här kallat linguafysik. även i detta fall så analyseras data med ett antagande om en underliggande slumpmässighet. Det demonstreras att vissa statistiska egenskaper av böcker, som man tidigare trott vara universella, egentligen beror på bokens längd och på författaren. En metaboksteori ställs fram vilken förklarar detta beroende genom att beskriva författandet av en text som att rycka ut en sektion ur en stor, individuell, abstrakt moderbok.
232

Some Investigations of Scaling Effects in Micro-Cutting

Subbiah, Sathyan 13 October 2006 (has links)
The scaling of specific cutting energy is studied when micro-cutting ductile metals. A unified framework for understanding the scaling in specific cutting energy is first presented by viewing the cutting force as a combination of constant, increasing, and decreasing force components, the independent variable being the uncut chip thickness. Then, an attempt is made to isolate the constant force component by performing high rake angle orthogonal cutting experiments on OFHC Copper. The data shows a trend towards a constant cutting force component as the rake angle is increased. In order to understand the source of this constant force component the chip-root is investigated. By quickly stopping the spindle at low cutting speeds, the chip is frozen and the chip-workpiece interface is examined in a scanning electron microscope. Evidence of ductile tearing ahead of the cutting tool is seen at low and high rake angles. At higher cutting speeds a quick-stop device is used to obtain chip-roots. These experiments also clearly indicate evidence of ductile fracture ahead of the cutting tool in both OFHC Copper and Al-2024 T3. To model the cutting process with ductile fracture leading to material separation the finite element method is used. The model is implemented in a commercial finite element software using the explicit formulation. Material separation is modeled via element failure. The model is then validated using the measured cutting and thrust forces and used to study the energy consumed in cutting. As the thickness of layer removed is reduced the energy consumed in material separation becomes important. Simulations also show that the stress state ahead of the tool is favorable for ductile fracture to occur. Ductile fracture in three locations in an interface zone at the chip root is seen while cutting with edge radius tool. A hypothesis is advanced wherein an element gets wrapped around the tool edge and is stretched in two directions leading to fracture. The numerical model is then used to study the difference in stress state and energy consumption between a sharp tool and a tool with a non-zero edge radius.
233

Theoretical studies of atom-atom, atom-photon and photon-photon entanglement

Sun, Bo 09 November 2006 (has links)
In this thesis the entanglement properties of atom-atom, atom-photon, and photon-photon are investigated. The recent developments of quantum computation as well as quantum information and communication have attracted much interest in the generation of these entanglements in the laboratory. To generate atom-photon entanglement, I discuss a model system in the cavity QED setup. By using a four-level atom and two resonant cavity modes, we can generate atom-photon entanglement almost deterministically. An extension of the above model to a six-level atom and again two resonant cavity modes can generate entangled photon pairs by appropriately adjusting system parameters. I then investigate the atom-atom entanglement in a 1D harmonic trap. I show the dependence of the pair entanglement on the scattering length and temperature, as well as the particle symmetry requirement (bosons or fermions). Among many peculiar properties in a 1D system, we briefly discuss the Fermi-Bose duality". While the entanglement properties of a single-channel model have recently been obtained for 1D and 3D systems, I thus study the entanglement of a multi-channel process in a cylindrical harmonic trap. I discuss the dependence of entanglement on the trap geometry. Finally I present detailed studies of the spin mixing between two Rb87 atoms in a single lattice site. The topic is emphasized on various motional state approximations and dipolar effect. Various motional state approximations can cause up to 20% error to experimental data. I also find that the dipolar interaction can lead to an experimentally observable frequency shift in a cylindrical harmonic trap with very large aspect ratio. The spin mixing of spin-2 manifold has also been discussed.
234

Percolation study of nano-composite conductivity using Monte Carlo simulation

Bai, Jing. January 2009 (has links)
Thesis (M.S.)--University of Central Florida, 2009. / Adviser: Kuo-Chi Lin. Includes bibliographical references (p. 84-92).
235

Photoassociation experiments on ultracold and quantum gases in optical lattices

Ryu, Changhyun 28 August 2008 (has links)
Not available / text
236

Self-consistent dynamics of nonlinear phase space structures

Eremin, Denis 28 August 2008 (has links)
Not available / text
237

Ecology of infectious diseases with contact networks and percolation theory

Bansal Khandelwal, Shweta, 1980- 29 August 2008 (has links)
Not available / text
238

NONLINEAR OPTICAL PHASE CONJUGATION BY 3-WAVE AND 4-WAVE MIXING

Tomita, A. (Akira) January 1980 (has links)
No description available.
239

Cooperativity, Fluctuations and Inhomogeneities in Soft Matter

Paulose, Jayson Joseph 07 December 2013 (has links)
This thesis presents four investigations into mechanical aspects of soft thin structures, focusing on the effects of stochastic and thermal fluctuations and of material inhomogeneities. First, we study the self-organization of arrays of high-aspect ratio elastic micropillars into highly regular patterns via capillary forces. We develop a model of capillary mediated clustering of the micropillars, characterize the model using computer simulations, and quantitatively compare it to experimental realizations of the self-organized patterns. The extent of spatial regularity of the patterns depends on the interplay between cooperative enhancement and history-dependent stochastic disruption of order during the clustering process. Next, we investigate the influence of thermal fluctuations on the mechanics of homogeneous, elastic spherical shells. We show that thermal fluctuations give rise to temperature- and size-dependent corrections to shell theory predictions for the mechanical response of spherical shells. These corrections diverge as the ratio of shell radius to shell thickness becomes large, pointing to a drastic breakdown of classical shell theory due to thermal fluctuations for extremely thin shells. Finally, we present two studies of the mechanical properties of thin spherical shells with structural inhomogeneities in their walls. The first study investigates the effect of a localized reduction in shell thickness—a soft spot—whereas the second studies shells with a smoothly varying thickness. In both cases, the inhomogeneity significantly alters the response of the shell to a uniform external pressure, revealing new ways to control the strength and shape of initially spherical elastic capsules. / Engineering and Applied Sciences
240

On the nature of the stock market : simulations and experiments

Blok, Hendrik J. 11 1900 (has links)
Over the last few years there has been a surge of activity within the physics community in the emerging field of Econophysics—the study of economic systems from a physicist's perspective. Physicists tend to take a different view than economists and other social scientists, being interested in such topics as phase transitions and fluctuations. In this dissertation two simple models of stock exchange are developed and simulated numerically. The first is characterized by centralized trading with a market maker. Fluctuations are driven by a stochastic component in the agents' forecasts. As the scale of the fluctuations is varied a critical phase transition is discovered. Unfortunately, this model is unable to generate realistic market dynamics. The second model discards the requirement of centralized trading. In this case the stochastic driving force is Gaussian-distributed "news events" which are public knowledge. Under variation of the control parameter the model exhibits two phase transitions: both a first- and a second-order (critical). The decentralized model is able to capture many of the interesting properties observed in empirical markets such as fat tails in the distribution of returns, a brief memory in the return series, and long-range correlations in volatility. Significantly, these properties only emerge when the parameters are tuned such that the model spans the critical point. This suggests that real markets may operate at or near a critical point, but is unable to explain why this should be. This remains an interesting open question worth further investigation. One of the main points of the thesis is that these empirical phenomena are not present in the stochastic driving force, but emerge endogenously from interactions between agents. Further, they emerge despite the simplicity of the modeled agents; suggesting complex market dynamics do not arise from the complexity of individual investors but simply from interactions between (even simple) investors. Although the emphasis of this thesis is on the extent to which multi-agent models can produce complex dynamics, some attempt is also made to relate this work with empirical data. Firstly, the trading strategy applied by the agents in the second model is demonstrated to be adequate, if not optimal, and to have some surprising consequences. Secondly, the claim put forth by Sornette et al. that large financial crashes may be heralded by accelerating precursory oscillations is also tested. It is shown that there is weak evidence for the existence of log-periodic precursors but the signal is probably too indistinct to allow for reliable predictions.

Page generated in 0.4253 seconds