• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neural membrane mutual coupling characterisation using entropy-based iterative learning identification

Tang, X., Zhang, Qichun, Dai, X., Zou, Y. 17 November 2020 (has links)
Yes / This paper investigates the interaction phenomena of the coupled axons while the mutual coupling factor is presented as a pairwise description. Based on the Hodgkin-Huxley model and the coupling factor matrix, the membrane potentials of the coupled myelinated/unmyelinated axons are quantified which implies that the neural coupling can be characterised by the presented coupling factor. Meanwhile the equivalent electric circuit is supplied to illustrate the physical meaning of this extended model. In order to estimate the coupling factor, a data-based iterative learning identification algorithm is presented where the Rényi entropy of the estimation error has been minimised. The convergence of the presented algorithm is analysed and the learning rate is designed. To verified the presented model and the algorithm, the numerical simulation results indicate the correctness and the effectiveness. Furthermore, the statistical description of the neural coupling, the approximation using ordinary differential equation, the measurement and the conduction of the nerve signals are discussed respectively as advanced topics. The novelties can be summarised as follows: 1) the Hodgkin-Huxley model has been extended considering the mutual interaction between the neural axon membranes, 2) the iterative learning approach has been developed for factor identification using entropy criterion, and 3) the theoretical framework has been established for this class of system identification problems with convergence analysis. / This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 51807010, and in part by the Natural Science Foundation of Hunan under Grant 1541 and Grant 1734. / Research Development Fund Publication Prize Award winner, Nov 2020.

Page generated in 0.0932 seconds