Spelling suggestions: "subject:"photoresistance estimation"" "subject:"toresistance estimation""
1 |
Analysis of the dynamics of the linear-and-rotary-motion energy-conversion systems with active DC excitationHe, Lijun 07 January 2016 (has links)
The objective of the dissertation is to develop simplified analytical models for typical linear-motion and rotary-motion energy-conversion systems under active DC excitation without tedious numerical-simulation effort, and provide practical implementation of the models in optimal-design and thermal-protection aspects.
The model of a vacuum automatic circuit recloser (a typical linear-motion system under DC excitation) is first developed in the form of a non-linear discontinuous eighth-order dynamic system. The model is then used to simulate the transient mechanical and electromagnetic performance during the opening and closing movements of the recloser. Such a model is not found in the literature.
Although the model is based on certain simplifying assumptions, the result is validated by high-speed-camera measurements. In addition, the impact of key design variables is explored, based on which an improved recloser design is proposed, and helps to optimize capital and production costs without degrading performance.
Further analytical investigation is carried out in modeling an inverter-fed induction motor (IM) (a typical rotary-motion system) with active DC injection. The IM is closed-loop controlled via two popular motor-control algorithms, namely, the direct-torque-control (DTC) algorithm and field-oriented-control (FOC) algorithm. Quantitative relationships between the changes of various machine variables during the active DC excitation are provided in the theoretical analysis. The developed DC-injection model is further simplified for practical implementation.
The developed IM model under DC injection results in practical ways to excite a proper amount of DC current directly or indirectly into IM stator windings via different closed-loop motor-control algorithms. In a DTC motor-drive system, the modeling work makes it possible to excite the DC current indirectly inside the motor by superimposing a stator-flux-linkage-bias command in the flux-control loop or a torque-ripple command in the torque-control loop. The proposed flux-linkage-injection and torque-injection methods are the first novel efforts to implement the DC-signal-injection method in a DTC motor-drive system. In addition, the analysis carried out in a standard FOC drive system brings about an improved DC-current-injection approach: the torque ripple in this method is significantly mitigated compared to all existing DC-injection methods in FOC systems.
The proposed DC-injection methods, either in a DTC or an FOC system, lead to a simple, low-cost, accurate, and non-invasive thermal-monitoring scheme for closed-loop-controlled IMs, where the stator temperature is indirectly estimated from stator resistance.
Furthermore, considering inverter non-idealities, there is a challenge for a typical inverter drive to accurately estimate the DC component of motor terminal voltages. The existing methods are extended to provide a complete study of the real-time signal-processing technique for both DTC and FOC algorithms, and are finally implemented in a custom-built programmable motor-drive system. The experimental results demonstrate that the proposed technique gives accurate and robust stator-temperature estimation, regardless of the operating conditions and cooling modes.
The analytical modeling method for the linear-motion and rotary-motion energy-conversion systems can be further extended to other power devices with similar mechanisms, and implemented in optimal design, control, and thermal-protection areas.
|
2 |
Online Parameter Estimation of a Six- Phase Machine for Marine ApplicationMontalba Mesa, Raimundo January 2021 (has links)
In the recent decades, an increased interest into multiphase machines has developed due to certain beneficial properties they have over the standard three- phase machines. Proper modelling of a multiphase machine allows access to higher degrees of freedom given by the ability to control higher order harmonic frames. This feature is of particular interest in the area of parameter estimation as it may provide an opportunity to implement methods that are not feasible in three- phase machines. Modelling of a real six- phase machine meant for marine application with a functioning control structure is carried out on MATLAB/Simulink; considering nonlinear relations, cross coupling and saturation effects, the model includes the machine’s behavior in the fundamental frame as well as the next two higher order harmonic frames. Stator resistances and permanent magnet flux linkage are estimated online and simultaneously during various operating points. It is shown that stator resistance may be accurately estimated by means of DC test signal injections into the highest order harmonic frame; thus, minimizing torque ripple and additional loss generation. Permanent magnet flux linkage is accurately estimated via reactive power calculations on the fundamental frame which remains undisturbed by the aforementioned test signals. / Under de senaste decennierna har intresset för flerfasmaskiner ökat, på grund av i vissa avseenden, fördelaktiga egenskaper i jämförelse med traditionella trefasmaskiner. En väl genomförd modellering av flerfasmaskiner möjliggör högre grader av frihet givet förmågan att kontrollera frekvensplan av högre ordning. Denna funktion är av särskilt intresse inom parameteruppskattning, då det kan ge möjligheter att implementera metoder som är omöjliga i trefas maskiner. En modell av en verklig sexfasmaskin, byggd för en marin tillämpning och med ett givet styrsystem, har skapats i MATLAB/Simulink. Modellen tar hänsyn till ickelinjära förhållanden, korskopplingar och mättning. Den inkluderar även maskinens egenskaper i det fundamentala frekvensplanet och de två nästkommande frekvensplanen av högre ordning. Statorresistansen och permanentmagneternas sammanlänkade flöden uppskattas i realtid för olika driftsförhållanden. Det visar sig att statorresistansen kan uppskattas noggrant genom inmatning av en DC testsignal i högsta ordningens frekvensplan vilket minimerar momentrippel och extra förluster. Permanentmagneternas flöden kan uppskattas noggrant genom beräkning av den reaktiva effekten i det fundamentala frekvensplanet som är opåverkat av de ovan nämnda testsignalerna.
|
Page generated in 0.1459 seconds