• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The field-stitching method in resonance-domain diffractive optics

Layet, Ben January 1997 (has links)
No description available.
2

Analyse des émissions électromagnétiques des circuits intégrés / Electromagnetic emissions analysis of integrated circuits

Ordas, Thomas 18 January 2010 (has links)
Dans le domaine de la sécurisation des circuits intégrés, tel que les cartes à puce, les concepteurs de circuits sont contraints à innover, inlassablement, afin de trouver de nouvelles parades aux nouvelles attaques, notamment par canaux cachés. En effet, ces attaques, comme l'analyse des émissions électromagnétiques, permettent d'extraire des informations, contenues à l'intérieur des circuits, sensées être secrètes. Partant de ce constat, dans cette thèse, nous nous sommes focalisés sur l'étude et l'analyse électromagnétique et ce afin de quantifier les possibilités de ces attaques. Ce manuscrit est organisé de la manière qui suit. Dans un premier temps, une plateforme de mesures des émissions électromagnétiques temporelles, que nous avons développées, est présentée, ainsi que des résultats qui ont été obtenus, avec celle-ci, sur différents circuits. A partir de ces résultats, une synthèse des possibilités, relatives à la menace sécuritaire que constituent les analyses électromagnétiques est proposée ainsi que, des propositions de solutions, visant à réduire le rayonnement électromagnétique des circuits intégrés. Dans un second temps, nous nous sommes intéressés aux méthodes de simulation de ces émissions électromagnétiques. Un état de l'art, des outils de simulation existants aujourd'hui, nous a permis de mettre en évidence qu'aucun d'eux ne permet d'avoir une résolution suffisamment fine en termes d'émissions électromagnétiques. Afin de combler ce manque, un flot de simulation a été développé. Pour valider ce flot, une comparaison entre les résultats de mesure et les résultats de simulation a été effectuée. / In the area of secure integrated circuits, such as smart cards, circuit designers are always looking to innovate to find new countermeasures against attacks by the various side channels that exist today. Indeed, side channels attacks such as the analysis of electromagnetic emissions permit to extract secret information contained in circuits. Based on this observation, in this thesis, we focused on the study of electromagnetic analysis to observe the analysis possibilities. This manuscript is organized as follows. Initially, we presented a measurement system for electromagnetic emissions in time domain, and the results obtained on different circuits. From these results, a summary of opportunities, relating to the security threat, posed by electromagnetic analysis, is proposed as well as solutions proposals to reduce electromagnetic radiations of integrated circuits. In a second step, we are interested in the simulation of electromagnetic emissions. A state of the art of simulation tools which exist today, has allowed us to demonstrate that none of them allowed to have a fine enough resolution in terms of electromagnetic emissions. To fill this gap, a simulation tool has been developed and to validate this flow, a comparison between measurement results and simulation results was performed.
3

Towards security limits of embedded hardware devices : from practice to theory

Peeters, Eric 16 November 2006 (has links)
Mobile appliances and especially smart cards have found more and more applications in the past two decades. A little more than ten years ago, the security of those devices still only relied on mathematical complexity and computational infeasibility to force cryptographic systems. Unfortunately, during the execution of cryptographic algorithms, unintentional leakage may be observed. Indeed, the power consumption or the electromagnetic emanations of the device are correlated to the encryption/decryption process. Those unintended channels are called “sidechannel”. Our work was not targeted at the discovery of new “side-channel” sources but rather at a thorough investigation of two of them: the power consumption and the electromagnetic emanation in the near-field domain. In this respect, we dealt with three different aspects of the problem: 1. We carried out many experiments on small microcontrollers but also on FPGAs in order to provide an explanation on the sources and on the set up of an efficient measurement process. Moreover, we provide the first XY scanning pictures of the electromagnetic field radiated by a small microcontroller. 2. Obtaining several measures of the observed side-channel, how is it possible to statistically analyzed these observations? We detail here the different methods available and we introduce an enhancement in the Template Attack process with Principal Component Analysis. 3. Finally, on the basis of this experience, we tried to answer the following question: “Is it possible to provide a theoretical tool to evaluate secure implementations?” The idea was to follow the notion of “Physical Computer” introduced by Micali and Reyzin. In this respect, we provide here two metrics that we consider necessary to evaluate both the strength of the adversary and the information held in the leakage. Respectively we choose the average success rate and the Shannon's mutual information.
4

Switched reluctance machine electromagnetic design and optimization

Dang, Jie 21 September 2015 (has links)
The objective of this dissertation is to study the switched reluctance machine (SRM) electromagnetic design and optimization. The research of electric machines is mostly driven by the motivation for higher efficiency and lower cost. The demands for high-performance electric machines also come from the development of emerging industries, such as electric vehicles (EV), hybrid electric vehicles (HEV), renewable energy conversion, energy storage and precision manufacturing. The additional requirements for those applications include volume, weight, speed, torque, reliability, fault tolerance capability, etc. The focus of the research effort is on the high speed and high torque applications, where the SRM stands out compared to other types of machines. The conventional design method significantly depends on the designer’s experience, which uses equivalent magnetic circuit models, and therefore the SRM design is not well developed. A novel SRM electromagnetic design and optimization method is developed, which uses the current-fed FEA simulation as the SRM performance estimation tool. This method serves as the main innovation of this research work. First, the proposed method is applicable to any SRM topologies and dimension, and no detailed modeling of a specific SRM configuration is required in advance. Therefore, an automated SRM design and optimization approach is developed. Secondly, great accuracy of the SRM electromagnetic analysis, e.g. flux density, torque, and current calculation, is achieved by using FEA simulation instead of simplified magnetic circuit approximations. This contribution is particularly significant when considering the poor accuracy of conventional SRM analytical analysis methods, where several assumptions and approximations are used. Lastly, the proposed design method takes the typical SRM control strategy into account, where the excitation current profile is characterized as a trapezoid. This method adapts the flux linkage of the first FEA simulation result to specify the excitation current profile for the second FEA simulation, so the calculated SRM performance in FEA simulation agrees with the measurement on a practical machine. The proposed SRM design and optimization method is used for a 12/8 SRM rotor design and for a complete 4/2 SRM design. These design examples validate the applicability of the proposed method to different SRM configurations and dimensions. Detailed design steps are presented for both design cases, and the selection of the parametric design variables are also discussed. The optimization results are demonstrated using multi-dimension diagrams, where the optimal design with the highest torque can be easily identified. The FEA simulation results are compared to the experimental results of a fabricated SRM prototype, and good agreement is found. In addition, a new rotor configuration with a flux bridge is proposed for an ultra high speed SRM design. The primary motivation of this rotor topology is to reduce the windgae losses and the acoustic noise at a high speed of 50,000 rpm. However, care must be taken for the flux bridge design, and the impact of different flux bridge thicknesses to the SRM performance is studied. Meanwhile, the manufacturing difficulties and the mechanical stresses should also be considered when fabricating the flux-bridge rotor. As a result, two SRM prototypes are built, and the two rotors are one without a flux bridge and one with a flux bridge. The prototypes are tested at different speeds (10,000 rpm, 20,000 rpm and 50,000 rpm) respectively, and the experimental results show good agreement with the FEA simulation results.
5

Accuracy Explicitly Controlled H2-Matrix Arithmetic in Linear Complexity and Fast Direct Solutions for Large-Scale Electromagnetic Analysis

Miaomiao Ma (7485122) 17 October 2019 (has links)
<div>The design of advanced engineering systems generally results in large-scale numerical problems, which require efficient computational electromagnetic (CEM) solutions. Among existing CEM methods, iterative methods have been a popular choice since conventional direct solutions are computationally expensive. The optimal complexity of an iterative solver is <i>O(NN<sub>it</sub>N<sub>rhs</sub>)</i> with <i>N</i> being matrix size, <i>N<sub>it </sub></i>the number of iterations and <i>N<sub>rhs</sub></i> the number of right hand sides. How to invert or factorize a dense matrix or a sparse matrix of size <i>N</i> in <i>O(N)</i> (optimal) complexity with explicitly controlled accuracy has been a challenging research problem. For solving a dense matrix of size <i>N</i>, the computational complexity of a conventional direct solution is <i>O(N<sup>3</sup>)</i>; for solving a general sparse matrix arising from a 3-D EM analysis, the best computational complexity of a conventional direct solution is <i>O(N<sup>2</sup>)</i>. Recently, an <i>H<sup>2</sup></i>-matrix based mathematical framework has been developed to obtain fast dense matrix algebra. However, existing linear-complexity <i>H<sup>2</sup></i>-based matrix-matrix multiplication and matrix inversion lack an explicit accuracy control. If the accuracy is to be controlled, the inverse as well as the matrix-matrix multiplication algorithm must be completely changed, as the original formatted framework does not offer a mechanism to control the accuracy without increasing complexity.</div><div> </div><div>In this work, we develop a series of new accuracy controlled fast <i>H<sup>2</sup></i> arithmetic, including matrix-matrix multiplication (MMP) without formatted multiplications, minimal-rank MMP, new accuracy controlled <i>H<sup>2</sup></i> factorization and inversion, new accuracy controlled <i>H<sup>2</sup></i> factorization and inversion with concurrent change of cluster bases, <i>H<sup>2</sup></i>-based direct sparse solver and new <i>HSS</i> recursive inverse with directly controlled accuracy. For constant-rank <i>H<sup>2</sup></i>-matrices, the proposed accuracy directly controlled <i>H<sup>2</sup></i> arithmetic has a strict <i>O(N)</i> complexity in both time and memory. For rank that linearly grows with the electrical size, the complexity of the proposed <i>H<sup>2</sup></i> arithmetic is <i>O(NlogN)</i> in factorization and inversion time, and <i>O(N)</i> in solution time and memory for solving volume IEs. Applications to large-scale interconnect extraction as well as large-scale scattering analysis, and comparisons with state-of-the-art solvers have demonstrated the clear advantages of the proposed new <i>H<sup>2</sup></i> arithmetic and resulting fast direct solutions with explicitly controlled accuracy. In addition to electromagnetic analysis, the new <i>H<sup>2</sup></i> arithmetic developed in this work can also be applied to other disciplines, where fast and large-scale numerical solutions are being pursued. </div>
6

Διερεύνηση χαρακτηριστικών ασύγχρονης μηχανής διπλού κλωβού με τη μέθοδο πεπερασμένων στοιχείων

Αθανασόπουλος, Δημήτριος 01 February 2013 (has links)
Η παρούσα διπλωματική εργασία εκπονήθηκε στο τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών του Πανεπιστημίου Πατρών. Το θέμα που πραγματεύεται είναι η μελέτη των τριφασικών ασύγχρονων μηχανών διπλού κλωβού με διαφορετικά υλικά στις αυλακώσεις του δρομέα. Τα κύρια αντικείμενα που ερευνώνται είναι δύο. Το πρώτο είναι η ανάλυση και η κατανόηση της ηλεκτρομαγνητικής συμπεριφοράς κινητήρων διπλού κλωβού με διαφορετικά υλικά στις αυλακώσεις του δρομέα. Το δεύτερο είναι η μελέτη σφαλμάτων δρομέα σε μηχανές διπλού κλωβού και οι μέθοδοι διάγνωσης αυτών. / This thesis was carried out at the Department of Electrical and Computer Engineering, University of Patras. The subject matter is the study of three-phase Asynchronous Double Cage Induction Motors with Different Rotor Bar Materials (motor double cage with different materials in the slots of the rotor). The main objects that are being investigated are two. The first is the analysis and understanding of the electromagnetic behaviour of double cage motors with different materials in the slots of the rotor. The second is the study of faults in the rotor in machines dual cage and the diagnostic methods.
7

Analysis of the dynamics of the linear-and-rotary-motion energy-conversion systems with active DC excitation

He, Lijun 07 January 2016 (has links)
The objective of the dissertation is to develop simplified analytical models for typical linear-motion and rotary-motion energy-conversion systems under active DC excitation without tedious numerical-simulation effort, and provide practical implementation of the models in optimal-design and thermal-protection aspects. The model of a vacuum automatic circuit recloser (a typical linear-motion system under DC excitation) is first developed in the form of a non-linear discontinuous eighth-order dynamic system. The model is then used to simulate the transient mechanical and electromagnetic performance during the opening and closing movements of the recloser. Such a model is not found in the literature. Although the model is based on certain simplifying assumptions, the result is validated by high-speed-camera measurements. In addition, the impact of key design variables is explored, based on which an improved recloser design is proposed, and helps to optimize capital and production costs without degrading performance. Further analytical investigation is carried out in modeling an inverter-fed induction motor (IM) (a typical rotary-motion system) with active DC injection. The IM is closed-loop controlled via two popular motor-control algorithms, namely, the direct-torque-control (DTC) algorithm and field-oriented-control (FOC) algorithm. Quantitative relationships between the changes of various machine variables during the active DC excitation are provided in the theoretical analysis. The developed DC-injection model is further simplified for practical implementation. The developed IM model under DC injection results in practical ways to excite a proper amount of DC current directly or indirectly into IM stator windings via different closed-loop motor-control algorithms. In a DTC motor-drive system, the modeling work makes it possible to excite the DC current indirectly inside the motor by superimposing a stator-flux-linkage-bias command in the flux-control loop or a torque-ripple command in the torque-control loop. The proposed flux-linkage-injection and torque-injection methods are the first novel efforts to implement the DC-signal-injection method in a DTC motor-drive system. In addition, the analysis carried out in a standard FOC drive system brings about an improved DC-current-injection approach: the torque ripple in this method is significantly mitigated compared to all existing DC-injection methods in FOC systems. The proposed DC-injection methods, either in a DTC or an FOC system, lead to a simple, low-cost, accurate, and non-invasive thermal-monitoring scheme for closed-loop-controlled IMs, where the stator temperature is indirectly estimated from stator resistance. Furthermore, considering inverter non-idealities, there is a challenge for a typical inverter drive to accurately estimate the DC component of motor terminal voltages. The existing methods are extended to provide a complete study of the real-time signal-processing technique for both DTC and FOC algorithms, and are finally implemented in a custom-built programmable motor-drive system. The experimental results demonstrate that the proposed technique gives accurate and robust stator-temperature estimation, regardless of the operating conditions and cooling modes. The analytical modeling method for the linear-motion and rotary-motion energy-conversion systems can be further extended to other power devices with similar mechanisms, and implemented in optimal design, control, and thermal-protection areas.
8

Nano-Focusing of Light: Electromagnetic Analysis and Simulation

Cajko, Frantisek 01 September 2009 (has links)
No description available.
9

Robust Finite Element Strategies for Structures, Acoustics, Electromagnetics and Magneto-hydrodynamics

Nandy, Arup Kumar January 2016 (has links) (PDF)
The finite element method (FEM) is a widely-used numerical tool in the fields of structural dynamics, acoustics and electromagnetics. In this work, our goal is to develop robust FEM strategies for solving problems in the areas of acoustics, structures and electromagnetics, and then extend these strategies to solve multi-physics problems such as magnetohydrodynamics and structural acoustics. We now briefly describe the finite element strategies developed in each of the above domains. In the structural domain, we show that the trapezoidal rule, which is a special case of the Newmark family of algorithms, conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ‘energy-like measure’ in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics variants of the trapezoidal rule that incorporate ‘high-frequency’ dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid FEM framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacementbased and hybrid approaches against analytical solutions. We also present a monolithic formulation for the solution of structural acoustic problems based on the hybrid finite element approach. In the area of electromagnetics, since our goal is to ultimately couple the electromagnetic analysis with structural or fluid variables in a ‘monolithic’ framework, we focus on developing nodal finite elements rather than using ‘edge elements’. It is well-known that conventional nodal finite elements can give rise to spurious solutions, and that they cannot capture singularities when the domains are nonconvex and have sharp corners. The commonly used remedies of either adding a penalty term or using a potential formulation are unable to address these problems satisfactorily. In order to overcome this problem, we first develop several mixed finite elements in two and three dimensions which predict the eigenfrequencies (including their multiplicities) accurately, even for non-convex domains. In this proposed formulation, no ad-hoc terms are added as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of the finite element spaces for the different variables. For inhomogeneous domains, ‘double noding’ is used to enforce the appropriate continuity conditions at an interface. Although the developed mixed FEM works very accurately for all 2D geometries and regular Cartesian 3D geometries, it has so far not yielded success for curved 3D geometries. Therefore, for 3D harmonic and transient analysis problems, we propose and use a modified form of the potential formulation that overcomes the disadvantages of the standard potential method, especially on non-convex domains. Electromagnetic radiation and scattering in an exterior domain traditionally involved imposing a suitable absorbing boundary condition (ABC) on the truncation boundary of the numerical domain to inhibit reflection from it. In this work, based on the Wilcox asymptotic expansion of the electric far-field, we propose an amplitude formulation within the framework of the nodal FEM, whereby the highly oscillatory radial part of the field is separated out a-priori so that the standard Lagrange interpolation functions have to capture a relatively gently varying function. Since these elements can be used in the immediate vicinity of the radiator or scatterer (with few exceptions which we enumerate), it is more effective compared to methods of imposing ABCs, especially for high-frequency problems. We show the effectiveness of the proposed formulation on a wide variety of radiation and scattering problems involving both conducting and dielectric bodies, and involving both convex and non-convex domains with sharp corners. The Time Domain Finite Element Method (TDFEM) has been used extensively to solve transient electromagnetic radiation and scattering problems. Although conservation of energy in electromagnetics is well-known, we show in this work that there are additional quantities that are also conserved in the absence of loading. We then show that the developed time-stepping strategy (which is closely related to the trapezoidal rule) mimics these continuum conservation properties either exactly or to a very good approximation. Thus, the developed numerical strategy can be said to be ‘unconditionally stable’ (from an energy perspective) allowing the use of arbitrarily large time-steps. We demonstrate the high accuracy and robustness of the developed method for solving both interior and exterior domain radiation problems, and for finding the scattered field from conducting and dielectric bodies. In the field of magneto-hydrodynamics, we develop a monolithic strategy based on a continuous velocity-pressure formulation that is known to satisfy the Babuska-Brezzi (BB) conditions. The magnetic field is interpolated in the same way as the velocity field, and the entire formulation is within a nodal finite element framework. Both transient and steady-state formulations are developed for two- and three-dimensional geometries. An exact linearization of the monolithic strategy ensures that rapid (quadratic) convergence is achieved within each time (or load) step, while the stable nature of the interpolations used ensure that no instabilities arise in the solution. Good agreement with analytical solutions, even with the use of very coarse meshes, shows the efficacy of the developed formulation.
10

CONTRA-MEDIDA POR RANDOMIZAÇÃO DE ACESSO À MEMÓRIA EM ARQUITETURA DE CRIPTOGRAFIA DE CHAVE PÚBLICA / MEMORY RANDOM ACCESS COUNTERMEASURE ON A PUBLIC KEY CRYPTOGRAPHY ARCHITECTURE

Henes, Felipe Moraes 18 November 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The expansion of the data communication, due to the large ow of information that pass through these systems has meant that the security becomes an item of constant concern. Even when considering the efficient encryption systems that exists today, which present relevant mathematical protection, some implementations in hardware of these systems will favor the leak of confidential information through side channels attacks, such as power consumption and electromagnetic radiation. Performance issues have fundamental importance in the design of a physical system, however aspects which make the system robust against side channel attacks has gotten more attention nowadays.This work focuses on hardware architectures based on the RSA public key algorithm, proposed by Rivest, Shamir and Adleman in 1977, which presents the modular exponentiation operation, calculated from several modular multiplications, as main operation. The RSA algorithm involves integers in order of 1024 or 2048 bits, so the division inherent in modular multiplications can become a major problem. In order to avoid these divisions, the Montgomery algorithm, proposed in 1985, appears as an efficient alternative. On this context, this dissertation presents a multiplexed architecture based on the properties of the Montgomery's algorithm. Forwarding, an improvement to this architecture is presented, implemented with the randomization of internal memories accesses, in order to increase system robustness against specialized side-channel attacks. Thus, the implemented architecture is exposed to side channels SPA (Simple Power Analysis) and SEMA (Simple Electromagnetig Analysis) and the aspects of security and robustness of the implemented system are evaluated and presented. / A constante expansão dos sistemas de comunicação de dados devido ao grande fluxo de informações que trafegam por estes sistemas tem feito com que a segurança se torne um item de constante preocupação. Mesmo ao considerar-se os eficientes sistemas de criptografia atuais, os quais apresentam relevante proteção matemática, a implementação em hardware destes sistemas tende a propiciar a fuga de informações confidenciais através de ataques por canais laterais, como consumo de potência e emissão eletromagnética. Mesmo sabendo-se que questões de desempenho tem fundamental importância no projeto de um sistema físico, aspectos que tornem o sistema robusto frente a ataques por canais laterais tem obtido maior atenção nos últimos anos. Neste trabalho apresentam-se arquiteturas implementadas em hardware para o cálculo do algoritmo de chave pública RSA, proposto por Rivest, Shamir e Adleman em 1977, o qual tem como principal operarção a exponenciação modular, calculada a partir de várias multiplicações modulares. Sabendo-se que o algoritmo RSA envolve números inteiros da ordem de 1024 ou 2048 bits, a divisão inerente em multiplicações modulares pode tornar-se o grande problema. A fim de que se evite estas divisões, o algoritmo de Montgomery, proposto em 1985, aparece como uma boa alternativa por também trabalhar em um contexto de precisão múltipla e com números na base numérica de potência de dois. Neste contexto apresenta-se inicialmente uma arquitetura multiplexada, baseada nas propriedades de execução do algoritmo de Montgomery. A seguir apresenta-se uma melhoria a esta arquitetura com a implementação da randomização dos acessos as memórias internas, com o objetivo de aumentar a robustez do sistema frente a ataques por canais laterais especializados. Sendo assim, a arquitetura implementada é submetida a ataques por canais laterais SPA (Simple Power Analysis) e SEMA (Simple Electromagnetig Analysis) e os aspectos de segurança e robustez do sistema implementado são analisados e apresentados.

Page generated in 0.4707 seconds