Spelling suggestions: "subject:"stayinplace"" "subject:"anyplace""
1 |
FATIGUE BEHAVIOR OF CONCRETE BRIDGE DECKS CAST ON GFRP STAY-IN-PLACE STRUCTURAL FORMS AND STATIC PERFORMANCE OF GFRP-REINFORCED DECK OVERHANGSRichardson, Patrick 18 September 2013 (has links)
The first part of the thesis addresses the fatigue performance of concrete bridge decks with GFRP stay-in-place structural forms replacing the bottom layer of rebar. The forms were either flat plate with T-up ribs joined using lap splices, or corrugated forms joined through pin-and-eye connections. The decks were supported by simulated Type III precast AASHTO girders spaced at 1775mm (6ft.). Two surface preparations were examined for each GFRP form, either using adhesive coating that bonds to freshly cast concrete, or simply cleaning the surface before casting. For the bonded deck with flat-ribbed forms, adhesive bond and mechanical fasteners were used at the lap splice, whereas the lap splice of the unbonded deck had no adhesive or fasteners. All the decks survived 3M cycles at 123kN service load of CL625 CHBDC design truck. The bonded flat-ribbed-form deck survived an additional 2M cycles at a higher load simulating a larger girder spacing of 8ft. Stiffness degradations were 9-33% with more reduction in the unbonded specimens. Nonetheless, live load deflections of all specimens remained below span/1600. The residual ultimate strengths after fatigue were reduced by 5% and 27% for the flat-ribbed and corrugated forms, respectively, but remained 7 and 3 times higher than service load.
The second part of the thesis investigates the performance of bridge deck overhangs reinforced by GFRP rebar. Overhangs of full composite slab-on-girder bridge decks at 1:2.75 scale were tested monotonically under an AASHTO tire pad. Five tests were conducted on overhangs of two lengths: 260mm and 516mm, representing scaled overhangs of 6ft. and 8ft. girder spacing, respectively. The 260mm overhang was completely reinforced with GFRP rebar while the 516mm overhang consisted of a GFRP-reinforced section and a steel-reinforced section. The peak loads were approximately 2 to 3 times the established equivalent service load of 24.3kN, even though the overhangs were not designed for flexure according to the CHBDC but rather with lighter minimum reinforcement in anticipation of shear failure. The failure mode
Abstract
ii
of each overhang section was punching shear. The steel-reinforced overhang section exhibited a greater peak load capacity (13.5%) and greater deformability (35%) when compared to the GFRP-reinforced overhang section. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-09-17 18:54:18.131
|
2 |
Fibre reinforced polymer (FRP) stay-in-place (SIP) participating formwork for new constructionGai, Xian January 2012 (has links)
The concept of stay-in-place (SIP) structural formwork has the potential to simplify and accelerate the construction process to a great extent. Fibre-reinforced polymer (FRP) SIP structural formwork offers further potential benefits over existing formwork systems in terms of ease and speed of construction, improved site safety and reduced long-term maintenance in corrosive environments. However, it is not without its limitations, including primarily the possibility of a lack of ductility, which is a key concern regarding the use of FRP structural formwork in practice. This thesis presents the findings of an experimental and analytical investigation into a novel FRP SIP structural formwork system for a concrete slab with a particular emphasis on its ability to achieve a ductile behaviour. The proposed composite system consists of a moulded glass fibre-reinforced polymer (GFRP) grating adhesively bonded to square pultruded GFRP box sections. The grating is subsequently filled with concrete to form a concrete-FRP composite floor slab. Holes cut into the top flange of the box sections allow concrete studs to form at the grating/box-section interface. During casting, GFRP dowels are inserted into the holes to further mechanically connect the grating and box sections. An initial experimental investigation into using GFRP grating as confinement for concrete showed that a significant increase in ultimate strength and strain capacity could be achieved compared to unconfined concrete. This enhanced strain capacity in compression allows greater use of the FRP capacity in tension when used in a floor slab system. Further experimental investigation into developing ductility at the grating/box-section interface showed that the proposed shear connection exhibited elastic-‘plastic’ behaviour. This indicated the feasibility of achieving ductility through progressive and controlled longitudinal shear failure. Following these component tests on the concrete-filled grating and the shear connectors, a total of six (300 x 150 x 3000) mm slab specimens were designed and tested under five-point bending. It was found that the behaviour of all specimens was ductile in nature, demonstrating that the proposed progressive longitudinal shear failure was effective. A three-stage analytical model was developed to predict the load at which the onset of longitudinal shear failure occurred, the stiffness achieved during the post elastic behaviour and, finally, the deflection at which ultimate failure occurred. Close agreement was found between experimental results and the theory.
|
3 |
Optimum design of one way concrete slabs cast against Textile Reinforced Concrete Stay-in-Place Formwork ElementsPapantoniou, Ioannis, Papanicolaou, Catherine, Triantafillou, Thanasis 03 June 2009 (has links) (PDF)
This study presents a conceptual design process for one-way reinforced concrete slabs cast over Textile Reinforced Concrete (TRC) Stay-in-Place (SiP) formwork elements, aiming at the minimization of the composite slab cost satisfying Ultimate Limit State (ULS) and Serviceability Limit State (SLS) design criteria. The thin-walled TRC element is considered to participate in the structural behaviour of the composite slab. This distinct function of the TRC element (as formwork and as a part of a composite element) distinguishes the design procedure into two States: a Temporary and a Permanent one. Design parameters such as the type of the textile reinforcement (material), the geometry of the TRC cross-section, the flexural strength of the fine-grained concrete in the TRC element and the compressive strength of the cast in-situ concrete are considered as the main optimization variables.
|
4 |
Pultruded GFRP sections as stay-in-place structural open formwork for concrete slabs and girdersHonickman, Hart Noah 15 July 2008 (has links)
Commercially available glass fiber-reinforced polymer (GFRP) off-the-shelf structural shapes have great potential as stay-in-place open structural forms for concrete structures, including bridge decks and girders. The system simplifies and accelerates construction, and the non-corrosive GFRP forms can fully or partially replace steel rebar. In this study, eight concrete slabs were constructed using flat pultruded GFRP plates, and nine girders were constructed using trapezoidal pultruded GFRP sheet pile sections as stay-in-place structural forms. No tension steel reinforcement was used. All specimens were tested in four-point monotonic uniaxial bending. Four adhesive and mechanical bond mechanisms were explored to accomplish composite action. The most effective mechanism, considering structural performance and ease of fabrication, was wet adhesive bonding of fresh concrete to GFRP. Although failure was by debonding, no slip was observed prior to failure. Other parameters studied were concrete slabs’ thicknesses and their shear span-to-depth ratios. For the girders, three different cross-sectional configurations were examined, namely, totally filled sheet piles, one with a voided concrete fill, and an all-GFRP box girder developed by bonding flat GFRP sheets to the upper flanges of the sheet piles with a cast-in-place concrete flange. Girders were tested in positive and negative bending to simulate continuity. The built-up box girders showed superior performance, with up to 70% higher strength and 65% lower weight than the totally filled sections. It was found that similar size conventional steel-reinforced concrete sections of comparable stiffness have considerably lower strength, while those of comparable strength have considerably higher stiffness than FRP-concrete members. An analytical model was developed to predict the behaviour and failure loads of slabs and girders, using cracked section analysis. A unique feature of the model is a multi-stepped failure criteria check that can detect flexural, shear, or bond failure. The model was successfully validated using the experimental results, and used in a parametric study. It was shown that using the typical value of 1MPa for shear strength of cement mortar predicts debonding failure, which occurs slightly above the interface, quite well. Also, in practical applications of longer spans, flexural failure is likely to occur prior to bond failure. / Thesis (Master, Civil Engineering) -- Queen's University, 2008-07-14 15:12:48.405
|
5 |
Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge ColumnsElnabelsya, Gamal 09 July 2013 (has links)
Performance of bridges during previous earthquakes has demonstrated that many structural failures could be attributed to seismic deficiencies in bridge columns. Lack of transverse reinforcement and inadequate splicing of longitudinal reinforcement in potential plastic hinge regions of columns constitute primary reasons for their poor performance. A number of column retrofit techniques have been developed and tested in the past. These techniques include steel jacketing, reinforced concrete jacketing and use of transverse prestressing (RetroBelt) for concrete confinement, shear strengthening and splice clamping. A new retrofit technique, involving fibre reinforced polymer (FRP) jacketing has emerged as a convenient and structurally sound alternative with improved durability. The new technique, although received acceptance in the construction industry, needs to be fully developed as a viable seismic retrofit methodology, supported by reliable design and construction procedures.
The successful application of externally applied FRP jackets to existing columns, coupled with deteriorating bridge infrastructure, raised the possibility of using FRP reinforcement for new construction. Stay-in-place formwork, in the form of FRP tubes are being researched for its feasibility. The FRP stay-in-place tubes offer ease in construction, convenient formwork, and when left in place, the protection of concrete against environmental effects, including the protection of steel reinforcement against corrosion, while also serving as column transverse reinforcement.
Combined experimental and analytical research was conducted in the current project to i) improve the performance of FRP column jacketing for existing bridge columns, and ii) to develop FRP stay-in-place formwork for new bridge columns. The experimental phase consisted of design, construction and testing of 7 full-scale reinforced concrete bridge columns under simulated seismic loading. The columns represented both existing seismically deficient bridge columns, and new columns in stay-in-place formwork. The existing columns were deficient in either shear, or flexure, where the flexural deficiencies stemmed from lack of concrete confinement and/or use of inadequately spliced longitudinal reinforcement. The test parameters included cross-sectional shape (circular or square), reinforcement splicing, column shear span for flexure and shear-dominant behaviour, FRP jacket thickness, as well as use of FRP tubes as stay-in-place formwork, with or without internally embedded FRP crossties. The columns were subjected to a constant axial compression and incrementally increasing inelastic deformation reversals.
The results, presented and discussed in this thesis, indicate that the FRP retrofit methodology provides significant confinement to circular and square columns, improving column ductility substantially. The FRP jack also improved diagonal tension capacity of columns, changing brittle shear-dominant column behavior to ductile flexure dominant response. The jackets, when the transverse strains are controlled, are able to improve performance of inadequately spliced circular columns, while remain somewhat ineffective in improving the performance of spliced square columns. FRP stay-in-place formwork provides excellent ductility to circular and square columns in new concrete columns, offering tremendous potential for use in practice.
The analytical phase of the project demonstrates that the current analytical techniques for column analysis can be used for columns with external FRP reinforcement, provided that appropriate material models are used for confined concrete, FRP composites and reinforcement steel. Plastic analysis for flexure, starting with sectional moment-curvature analysis and continuing into member analysis incorporating the formation of plastic hinging, provide excellent predictions of inelastic force-deformation envelopes of recorded hysteretic behaviour. A displacement based design procedure adapted to FRP jacketed columns, as well as columns in FRP stay-in-place formwork provide a reliable design procedure for both retrofitting existing columns and designing new FRP reinforced concrete columns.
|
6 |
Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge ColumnsElnabelsya, Gamal January 2013 (has links)
Performance of bridges during previous earthquakes has demonstrated that many structural failures could be attributed to seismic deficiencies in bridge columns. Lack of transverse reinforcement and inadequate splicing of longitudinal reinforcement in potential plastic hinge regions of columns constitute primary reasons for their poor performance. A number of column retrofit techniques have been developed and tested in the past. These techniques include steel jacketing, reinforced concrete jacketing and use of transverse prestressing (RetroBelt) for concrete confinement, shear strengthening and splice clamping. A new retrofit technique, involving fibre reinforced polymer (FRP) jacketing has emerged as a convenient and structurally sound alternative with improved durability. The new technique, although received acceptance in the construction industry, needs to be fully developed as a viable seismic retrofit methodology, supported by reliable design and construction procedures.
The successful application of externally applied FRP jackets to existing columns, coupled with deteriorating bridge infrastructure, raised the possibility of using FRP reinforcement for new construction. Stay-in-place formwork, in the form of FRP tubes are being researched for its feasibility. The FRP stay-in-place tubes offer ease in construction, convenient formwork, and when left in place, the protection of concrete against environmental effects, including the protection of steel reinforcement against corrosion, while also serving as column transverse reinforcement.
Combined experimental and analytical research was conducted in the current project to i) improve the performance of FRP column jacketing for existing bridge columns, and ii) to develop FRP stay-in-place formwork for new bridge columns. The experimental phase consisted of design, construction and testing of 7 full-scale reinforced concrete bridge columns under simulated seismic loading. The columns represented both existing seismically deficient bridge columns, and new columns in stay-in-place formwork. The existing columns were deficient in either shear, or flexure, where the flexural deficiencies stemmed from lack of concrete confinement and/or use of inadequately spliced longitudinal reinforcement. The test parameters included cross-sectional shape (circular or square), reinforcement splicing, column shear span for flexure and shear-dominant behaviour, FRP jacket thickness, as well as use of FRP tubes as stay-in-place formwork, with or without internally embedded FRP crossties. The columns were subjected to a constant axial compression and incrementally increasing inelastic deformation reversals.
The results, presented and discussed in this thesis, indicate that the FRP retrofit methodology provides significant confinement to circular and square columns, improving column ductility substantially. The FRP jack also improved diagonal tension capacity of columns, changing brittle shear-dominant column behavior to ductile flexure dominant response. The jackets, when the transverse strains are controlled, are able to improve performance of inadequately spliced circular columns, while remain somewhat ineffective in improving the performance of spliced square columns. FRP stay-in-place formwork provides excellent ductility to circular and square columns in new concrete columns, offering tremendous potential for use in practice.
The analytical phase of the project demonstrates that the current analytical techniques for column analysis can be used for columns with external FRP reinforcement, provided that appropriate material models are used for confined concrete, FRP composites and reinforcement steel. Plastic analysis for flexure, starting with sectional moment-curvature analysis and continuing into member analysis incorporating the formation of plastic hinging, provide excellent predictions of inelastic force-deformation envelopes of recorded hysteretic behaviour. A displacement based design procedure adapted to FRP jacketed columns, as well as columns in FRP stay-in-place formwork provide a reliable design procedure for both retrofitting existing columns and designing new FRP reinforced concrete columns.
|
7 |
Effect of Initial Surface Treatment Timing on Chloride Concentrations in Concrete Bridge DecksBirdsall, Aimee Worthen 29 January 2007 (has links) (PDF)
Bridge engineers and managers in coastal areas and cold regions frequently specify the application of surface treatments on concrete bridge decks as barriers against chloride ingress. In consideration of concrete cover thickness and the presence of stay-in-place metal forms (SIPMFs), the objective of this research was to determine the latest timing of initial surface treatment applications on concrete bridge decks subjected to external chloride loading before chlorides accumulate in sufficient quantities to initiate corrosion during the service life of the deck. Chloride concentration data for this research were collected from 12 concrete bridge decks located within the I-215 corridor in Salt Lake City, Utah. Numerical modeling was utilized to generate a chloride loading function and to determine the diffusion coefficient of each deck. Based on average diffusion coefficients for decks with and without SIPMFs, chloride concentration profiles were computed through time for cover thicknesses of 2.0 in., 2.5 in., and 3.0 in. The results of the work show that the average diffusion coefficient for bridge decks with SIPMFs is approximately twice that of decks without SIPMFs and that, on average, each additional 0.5 in. of cover beyond 2.0 in. allows an extra 2 years for decks with SIPMFs and 5 years for decks without SIPMFs before a surface treatment must be placed to prevent excessive accumulation of chlorides. Although the data generated in this research are based on conditions typical of bridge decks in Utah, they clearly illustrate the effect of cover depth and the presence of SIPMFs. Given these research findings, engineers should carefully determine the appropriate timing for initial applications of surface treatments to concrete bridge decks in consideration of cover depth and the presence of SIPMFs. For maintenance of concrete bridge decks with properties similar to those tested in this study, engineers should follow the guidelines developed in this research to minimize the ingress of chlorides into the decks over time and therefore retard the onset of reinforcement corrosion; altogether separate guidelines may be needed for decks having substantially different properties. Surface treatments should be replaced as needed to ensure continuing protection of the concrete bridge deck against chloride ingress.
|
8 |
Optimum design of one way concrete slabs cast against Textile Reinforced Concrete Stay-in-Place Formwork ElementsPapantoniou, Ioannis, Papanicolaou, Catherine, Triantafillou, Thanasis 03 June 2009 (has links)
This study presents a conceptual design process for one-way reinforced concrete slabs cast over Textile Reinforced Concrete (TRC) Stay-in-Place (SiP) formwork elements, aiming at the minimization of the composite slab cost satisfying Ultimate Limit State (ULS) and Serviceability Limit State (SLS) design criteria. The thin-walled TRC element is considered to participate in the structural behaviour of the composite slab. This distinct function of the TRC element (as formwork and as a part of a composite element) distinguishes the design procedure into two States: a Temporary and a Permanent one. Design parameters such as the type of the textile reinforcement (material), the geometry of the TRC cross-section, the flexural strength of the fine-grained concrete in the TRC element and the compressive strength of the cast in-situ concrete are considered as the main optimization variables.
|
9 |
Effect of Stay-in-Place Metal Forms on Performance of Concrete Bridge DecksFrost, Stephen Litster 22 June 2006 (has links) (PDF)
The objectives of this research were to investigate the effect of stay-in-place metal forms (SIPMFs) on the performance of concrete bridge decks in Utah. The research program included six bridge decks with SIPMFs and six decks without SIPMFs, which were all located within the Interstate 215 corridor in the vicinity of Salt Lake City, Utah, and therefore subject to similar traffic loading, climatic conditions, and maintenance treatments, including applications of deicing salts during winter months. All of the tested decks were constructed between 1984 and 1989 using epoxy-coated rebar. Several tests were performed at each of six locations on each deck, including visual inspection, chain dragging, hammer sounding, Schmidt hammer testing, half-cell potential testing, and chloride concentration testing. Because differences in deck age and average cover for the two deck types were found to be statistically significant, the collected data were subjected to analysis of covariance (ANOCOVA) testing, with age and cover as covariates. All calculated p-values were compared to the standard value of 0.05. The distress survey results indicate that the average crack width and crack density for decks without SIPMFs were greater by 41 and 25 percent, respectively, than the corresponding values for decks with SIPMFs and that decks without SIPMFs had more potholes than decks with SIPMFs. However, the delamination density for bridge decks with SIPMFs was 71 percent higher than that of decks without SIPMFs. The average Schmidt rebound number for decks with SIPMFs was higher than that for decks without SIPMFs by an equivalent of 1,400 psi. The half-cell potential for decks with SIPMFs was 0.123 lower than that of decks without SIPMFs, indicating that a more active state of corrosion exists on decks with SIPMFs. On average, the chloride concentration in the bridge decks with SIPMFs was 205 percent greater than the concentration in the decks without SIPMFs. Among all of the distress measurements evaluated in the ANOCOVA, crack width was the only parameter that was determined to be significantly different between the two types of decks at the time of testing. In addition, Schmidt rebound number, half-cell potential, and chloride concentration at 2-in. depth all yielded p-values less than 0.05, indicating that significant differences in these properties exist between decks with and without SIPMFs. Specifically, the decks with SIPMFs have a higher compressive strength, a more active state of corrosion, and a higher chloride concentration, which may all be attributable to elevated moisture contents in decks with SIPMFs arising from the reduction in deck surface area from which moisture may evaporate. These data indicate that decks with SIPMFs are clearly more susceptible to reinforcement corrosion compared to decks without SIPMFs and may therefore exhibit greater magnitudes of damage with time. Given these research findings, engineers should carefully compare the short-term advantages against the potential long-term disadvantages associated with the use of SIPMFs for concrete bridge deck construction. If SIPMFs are approved for use, engineers may consider applying surface treatments to the affected decks early in the deck life to minimize the ingress of chlorides into the concrete over time and therefore retard the onset of reinforcement corrosion.
|
10 |
Effect of Initial Scarification and Overlay Treatment Timing on Chloride Concentrations in Concrete Bridge DecksNolan, Curtis Daniel 19 November 2008 (has links) (PDF)
Considering the pervasive presence of chlorides in concrete bridge decks, bridge engineers have a critical responsibility to perform proper and effective preventive maintenance and rehabilitation operations. Bridge engineers often perform scarification and overlay (SO) procedures on concrete bridge decks to minimize the corrosion of reinforcing steel due to chloride ingress. Given the need to develop guidelines for the initial timing of SO treatments, the specific objectives of this research were to collect information from several department of transportation (DOT) personnel about their SO procedures and, subsequently, to determine the recommended timing of initial SO procedures on concrete bridge decks for preventing the accumulation of corrosion-inducing levels of chlorides and extending deck service life. A questionnaire survey of state DOTs was conducted, and numerical modeling of SO treatments was performed. Simulations involving both decks with and without stay-in-place metal forms (SIPMFs) were performed. Numerical modeling was performed for each unique combination of variables through a service life of 50 years to determine the recommended initial timing of SO treatment in each case. The research results show that, overall, bridge decks without SIPMFs can endure longer delays in SO treatment timing than those with SIPMFs; in all cases, the absence of SIPMFs extended the amount of time before an SO treatment was needed. For decks with SIPMFs, the allowable delay in SO timing ranged from 2 to 6 years, while on decks without SIPMFs the allowable delay in SO timing ranged from 6 to 18 years. These delays are only 1 to 3 years longer than allowable delays associated with placement of surface treatments investigated in previous research. On average, the period of additional delay allowed before an SO treatment is required in decks with SIPMFs was 2 years with each additional 0.5 in. of OCD. In decks without SIPMFs, the presence of a greater OCD had a more pronounced effect on the latest recommended timing of treatment than in the decks with SIPMFs; an average additional delay period of 5 years was obtained with each additional 0.5 in. of OCD in decks without SIPMFs. Together with the findings of this research and the specific properties of the bridge deck under scrutiny, engineers can determine the appropriate timing of rehabilitation procedures to prevent or mitigate corrosion of the steel reinforcement of a bridge deck and ensure the usability of the deck for its intended service life. Although the conditions studied in this research were consistent with bridges located in the state of Utah, bridge decks that exist in similar environments and that are subjected to similar treatments of deicing salts as part of winter maintenance could exhibit similar properties to the decks simulated in this research. Engineers should carefully consider the results of this research and implement proper timing of SO treatments on their respective bridge decks to protect against and minimize the effects of corrosion due to chloride ingress.
|
Page generated in 0.0693 seconds