• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fatty Acid Desaturase Activities in Metabolic Syndrome and Cardiovascular Disease : Special Reference to Stearoyl-CoA-Desaturase and Biomarkers of Dietary Fat

Warensjö, Eva January 2007 (has links)
The development of the metabolic syndrome (MetS) and cardiovascular diseases have been suggested to be influenced more by the quality than the amount of dietary fat. The FA composition of serum lipids may be used as biomarkers of dietary fat quality. FAs can, however, also be endogenously synthesized by lipogenic enzymes such as elongases and desaturases. Three desaturases are important in humans: Stearoyl-CoA-desaturase (SCD), ∆6-desaturase (D6D) and ∆5-desaturase (D5D) and surrogate measures of desaturase activities can be estimated as product-to-precursor FA ratios. In this thesis, we demonstrated that high SCD, D6D and low D5D estimated activities predicted MetS 20 years later, as well as cardiovascular and total mortality during a maximum of 33.7 years. The relation between D5D and MetS was independent of lifestyle and BMI, while the relation between SCD, D6D and MetS was confounded by BMI. Serum proportions of palmitic (16:0), palmitoleic (16:1) and dihomo-γ-linoleic acids were higher and the serum proportion of linoleic acid (LA) lower at baseline in those individuals who developed MetS. Further, LA was inversely related to mortality, while palmitic, palmitoleic and dihomo-γ-linoleic acids were directly associated with mortality. We also demonstrated that a diet rich in saturated fat “induced” a similar serum FA pattern (including estimated desaturase activities) that was associated with MetS, cardiovascular disease and mortality. We also propose that the SCD ratio [16:1/16:0] might be a novel and useful marker of dietary saturated fat, at least in Western high-fat diets. Finally, genetic variations in the human SCD1 gene were linked to obesity and insulin sensitivity, results that agree with data in SCD1 deficient mice. This thesis suggests that dietary fat quality and endogenous desaturation may play a role in the development of metabolic and cardiovascular diseases and the results support current dietary guidelines.
12

Role of the regulation of cell lipid composition and membrane structure in the antitumor effect of 2-hydroxyoleic acid

Laura Martin, Maria 26 October 2011 (has links)
El ácido 2-hidroxioleico (2OHOA) es un fármaco antitumoral diseñado para regular la estructura y composición de los lípidos de membrana y la función de importantes proteínas de membrana. El objetivo principal de este trabajo fue estudiar cómo el 2OHOA modula la composición lipídica y la estructura de membrana en las células tumorales. Se observó que el 2OHOA indujo profundas alteraciones en el contenido de fosfolípidos, aumentando el contenido de esfingomielina y disminuyendo el contenido de fosfatidiletanolamina y fosfatidilcolina. Este efecto fue específico contra las células cancerosas, ya que el tratamiento no afectó la composición lipídica de las células no tumorales MRC-5 de fibroblastos humanos. El aumento de SM se debió a una activación rápida y específica de las SM sintasas. Como consecuencia de la activación sostenida de la SMS, todo el metabolismo de los esfingolípidos se vio afectado. Finalmente, se evaluó el impacto de todos estos cambios sobre las propiedades biofísicas de membrana mediante espectroscopia de fluorescencia / 2-Hydroxyoleic acid (2OHOA) is a potent antitumor drug that was designed to regulate membrane lipid composition and structure and the function of important membrane proteins. The main goal of this work was to study how 2OHOA modulates the membrane lipid composition and structure of tumor cells. 2OHOA induced dramatic alterations in phospholipid content, increasing sphingomyelin mass, and decreasing phosphatidyl-ethanolamine and phosphatidylcholine. This effect was specific against cancer cells as it did not affect non-tumor MRC-5 cells. The increased SM mass was due to a rapid and highly specific activation of SM synthases. As a consequence of the sustained activation of SMS, the whole sphingolipid metabolism was affected. Then, the impact of all these changes on membrane biophysical properties was evaluated by fluorescence spectroscopy
13

Genetic polymorphisms in the stearoyl-CoA desaturase1 (SCD1) gene and their influence on the conjugated linoleic acid (CLA) and monounsaturated fatty acids (MUFA) content of milk fat of Canadian Holstein and Jersey cows

Kgwatalala, Patrick M., 1973- January 2008 (has links)
Stearoyl-CoA desaturase1 (SCD1) catalyzes the synthesis of conjugated linoleic acid (CLA) and mono-unsaturated fatty acids (MUFA) in the mammary gland of ruminant animals. We hypothesized that single nucleotide polymorphisms (SNPs) in the coding region, 5' and 3' untranslted regions (UTRs) of the SCD1 gene would influence the activity of SCD1 enzyme and consequently account for some within-breed variations in milk CLA and MUFA. Sequence analysis of the coding region of the SCD1 gene of Jerseys and Holsteins revealed c.702A→G, c.762T→C and c.878C→T SNPs in exon 5 in both breeds and c.435G→A in exon 3 in Holsteins. The SNPs resulted in: A (G435A702T 762C878), A1 (A435A702T 762C878), B (G435G702C 762T878) and B1 (A435G702C 762T878) coding variants in Holsteins and only variants A and B in Jerseys. Only SNP 878C→T resulted in a non-synonymous codon change resulting in p.293Ala and p.293Val protein variants or alleles at the SCD1 locus. Subsequent association studies found significantly higher C10 index, C12 index and C14 index and consequently higher concentrations of C10:1 and C12:1 in p.293AA cows compared to the p.293VV cows in both breeds. The SCD1 genotype had no influence on concentrations of C141, C16:1, C18:1 and CLA in both breeds. / Sequence analysis of the 5' and 3' UTRs revealed no SNPs in the 5'UTR and a total of 14 SNPs in the 3'UTR of both breeds. The SNPs were in complete linkage disequilibrium resulting in 3 haplotypes or regulatory variants: H1 (G1571G1644C1763C2053A2584 A3007C3107G3208 T3290G 3497G3682A4399C4533G4881), H2 (G1571G1644A1763C2053A 2584G3007 C3107G3208T3290G3497G 3682A4399C4533G4881) and H3 (T 1571C1644A1763 T2053G2584G3007T 3107A3208C3290A3497A3682T 4399T4533A4881) in Holsteins and only H1 and H3 variants in Jerseys. A subsequent association study involving 862 Holstein cows, found the H1 regulatory variant to be associated with higher C10 and C12 desaturase indices and consequently with higher concentrations of C10:1 and C12:1 compared with the H3 variant. The effects of the H2 variant were intermediate to those of H1 and H3. 3'UTR genotype had no influence on the concentrations of C14:1, C16:1, C18:1 and CLA. The concentrations of C10:1 and C12:1 in milk fat could therefore be due to effects of SNPs in the open reading frame and the 3'UTR regions of the SCD1 gene. These results indicate that SNPs in the coding and 3'UTR regions of the SCD1 gene could be used as markers for genetic selection for increased C10:1 and C12:1 contents of milk.
14

The Molecular Mechanisms for Maintenance of Cancer Stem Cells in Chronic Myeloid Leukemia: A Dissertation

Zhang, Haojian 23 May 2012 (has links)
Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder associated with the Philadelphia chromosome (Ph) that arises from a reciprocal translocation between chromosomes 9 and 22, thereby resulting in the formation of the chimeric BCR-ABL oncogene encoding a constitutively activated tyrosine kinase. BCR-ABL tyrosine kinase inhibitors (TKIs) induce a complete hematologic and cytogenetic response in the majority of chronic phrase CML patients. However, TKIs cannot efficiently eradicate leukemia stem cells (LSCs) because of the insensitivity of LSCs to TKIs. Therefore, developing new strategies to target LSCs is necessary and critical for curing CML, and success of this approach depends on further understanding the molecular mechanisms by which LSCs survive and are maintained. In Chapter I, I briefly introduce CML disease, BCR-ABL oncoprotein, and TKIs. I also describe the identification and features of LSCs. Several key pathways in LSCs including Wnt/ß-catenin, hedgehog, FoxO, Bcl6 and HIF1, are discussed. I also propose our strategy to identify unique molecular pathways that are important for LSCs but not their normal stem cell counterparts. In Chapter II, I describe our finding about the function of the positive regulator, HIF1α, in CML development and LSC survival. I show that loss of HIF1α impairs the maintenance of CML through impairing cell cycle progression and inducing apoptosis of LSCs, and I also report that p16Ink4a and p19Arf mediate the effect of HIF1α on LSCs, as knockdown of p16Ink4a and p19Arf rescues the defective colony-forming ability of HIF1α-/- LSCs. As detailed in Chapter III and IV, through comparing the global gene expression profiles of LSCs and HSCs, I find two novel regulators, Blk and Scd1, which act as tumor suppressors in CML development. In Chapter III, I show that Blk is markedly down-regulated by BCR-ABL in LSCs, and that c-Myc and Pax5 mediate this down-regulation. Deletion of Blk accelerates CML development; conversely, Blk overexpression significantly delays the development of CML and impairs the function of LSCs. I also demonstrate that p27, as a downstream effector, is involved in the function of Blk in LSCs. Blk also functions as a tumor suppressor in human CML stem cells, and inhibits the colony-forming ability of human CML cells. In Chapter IV, I investigate the function of another negative regulator, Scd1, in CML LSCs, and find that expression of Scd1 is down-regulated in mouse LSCs and human CML cells. We report that Scd1 acts as a tumor suppressor in CML, as loss of Scd1 causes acceleration of CML development and overexpression of Scd1 delays CML development. Using a colony-forming assay, I demonstrate that Scd1 impairs the maintenance of LSCs due to the change of expression of Pten, p53 and Bcl2. Importantly, I find that both Blk and Scd1 do not affect normal hematopoietic stem cells (HSCs) or hematopoiesis. Taken together, our findings demonstrate that HIF1α is required for the maintenance of CML LSCs, and conversely that Blk and Scd1 suppress the function of LSCs, suggesting that combining TKI treatment with specific targeting of LSCs will be necessary for curing CML.
15

Genetic polymorphisms in the stearoyl-CoA desaturase1 (SCD1) gene and their influence on the conjugated linoleic acid (CLA) and monounsaturated fatty acids (MUFA) content of milk fat of Canadian Holstein and Jersey cows

Kgwatalala, Patrick M., 1973- January 2008 (has links)
No description available.
16

Intestinal Gene Expression Profiling and Fatty Acid Responses to a High-fat Diet

Cedernaes, Jonathan January 2013 (has links)
The gastrointestinal tract (GIT) regulates nutrient uptake, secretes hormones and has a crucial gut flora and enteric nervous system. Of relevance for these functions are the G protein-coupled receptors (GPCRs) and the solute carriers (SLCs). The Adhesion GPCR subfamily is known to mediate neural development and immune system functioning, whereas SLCs transport e.g. amino acids, fatty acids (FAs) and drugs over membranes. We aimed to comprehensively characterize Adhesion GPCR and SLC gene expression along the rat GIT. Using qPCR we measured expression of 78 SLCs as well as all 30 Adhesion GPCRs in a twelve-segment GIT model. 21 of the Adhesion GPCRs had a widespread (≥5 segments) or ubiquitous (≥11 segments) expression. Restricted expression patterns were characteristic for most group VII members. Of the SLCs, we found the majority (56 %) of these transcripts to be expressed in all GIT segments. SLCs were predominantly found in the absorption-responsible gut regions. Both Adhesion GPCRs and SLCs were widely expressed in the rat GIT, suggesting important roles. The distribution of Adhesion GPCRs defines them as a potential pharmacological target. FAs constitute an important energy source and have been implicated in the worldwide obesity increase. FAs and their ratios – indices for activities of e.g. the desaturase enzymes SCD-1 (SCD-16, 16:1n-7/16:0), D6D (18:3n-6/18:2n-6) and D5D (20:4n-6/20:3n-6) – have been associated with e.g. overall mortality and BMI. We examined whether differences in FAs and their indices in five lipid fractions contributed to obesity susceptibility in rats fed a high fat diet (HFD), and the associations of desaturase indices between lipid fractions in animals on different diets. We found that on a HFD, obesity-prone (OP) rats had a higher SCD-16 index and a lower linoleic acid (LA) proportions in subcutaneous adipose tissue (SAT) than obesity-resistant rats. Desaturase indices were significantly correlated between many of the lipid fractions. The higher SCD-16 may indicate higher SCD-1 activity in SAT in OP rats, and combined with lower LA proportions may provide novel insights into HFD-induced obesity. The associations between desaturase indices show that plasma measurements can serve as proxies for some lipid fractions, but the correlations seem to be affected by diet and weight gain.

Page generated in 0.0662 seconds