• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogen removal from steel.

Paneni, Mario. January 1969 (has links)
No description available.
2

Hydrogen embrittlement of 4340 steel as a result of corrosion of porous cadmium electroplate.

Rinker, John George 08 1900 (has links)
No description available.
3

Hydrogen embrittlement of cold worked plain carbon steel

Hsieh, Jang-Hsing 08 1900 (has links)
No description available.
4

Hydrogen removal from steel.

Paneni, Mario. January 1969 (has links)
No description available.
5

The effect of hydrogen on the fatigue life of high strength steel

Wilson, James H. 06 February 2013 (has links)
Torsional fatigue tests were conducted on 4370 steel oil quenched and tempered at 1000° F in (l) the uncharged state, (2) the hydrogen charged state, and (3) in a hydrogen environment. The tests were conducted on both smooth (K<sub>t</sub> = l.l) and V-notch (K<sub>t</sub> = 3.8) test specimens. A statistical analysis conducted at the 99% confidence limit for the smooth test specimens indicated that precharging with hydrogen increased the fatigue life of the material and also the fracture surface of the test specimens changed from a circumferential crack to a 45° diagonal crack. At a 90% confidence limit, charging with hydrogen did not affect the fatigue life of the V-notched specimens. At a 99% confidence limit for both the smooth and V-notched test specimens, testing in a hydrogen environment increased the fatigue life of the material. Bending fatigue tests were also conducted on the same material and the results indicated that charging with hydrogen decreased fatigue life of smooth test specimens (K<sub>t</sub> = l.l) but increased the fatigue life for V-notched specimens (K<sub>t</sub> = 2.4 and 3.8). / Ph. D.
6

Mechanisms of environmentally influenced fatigue crack growth in lower strength steels

Suresh, Subramanian January 1981 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Subramanian Suresh. / Sc.D.
7

Impact fracture of austenitic stainless steels

Kornegay, Cynthia E. January 1985 (has links)
Industry is constantly searching for improved materials for use in highly demanding applications. The materials chosen must withstand a wide range of temperatures and extended exposure in aggressive environments, including hydrogen gas. Because of the risk of catastrophe if brittle failure occurs, careful material selection is imperative. Austenitic stainless steels may be a likely choice for hydrogen service because their behavior in high pressure hydrogen ranges from no apparent damage to relevant, but generally small ductility loss (13). Because of this Variation in behavior, a single category cannot be established to encompass all austenitic steels and studies must be performed on each type of steel to determine its behavior under specific circumstances. Two steels being currently under consideration for use in hydrogen are Armco 21-6-9 and Tenelon, both are fully austenitic stainless steels which may be used over a wide range of temperatures, including service at liquid nitrogen temperature. / Master of Science / incomplete_metadata

Page generated in 0.1083 seconds