• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Test Bench for Experimental Research and Identification of Electrohydraulic Steering Units

Angelov, Ilcho, Mitov, Alexander 03 May 2016 (has links) (PDF)
The paper presents design solution and physical implementation of a system for examination of electro hydraulic steering based on OSPE 200 components. The implementation is based on synthesis of required hydraulic and structure parameters, presented in a previous paper. Now we present the interconnection of the digital control system and the closed-loop flow diagram. A formal description of embedded software is presented too, which supports operation of PI control algorithm in real-time. Identification is performed based on experimentally reported the transitional process by developing mathematical models. Presents the structure and capabilities of the models for identification, as well as procedures for their validation.
2

Test Bench for Experimental Research and Identification of Electrohydraulic Steering Units

Angelov, Ilcho, Mitov, Alexander January 2016 (has links)
The paper presents design solution and physical implementation of a system for examination of electro hydraulic steering based on OSPE 200 components. The implementation is based on synthesis of required hydraulic and structure parameters, presented in a previous paper. Now we present the interconnection of the digital control system and the closed-loop flow diagram. A formal description of embedded software is presented too, which supports operation of PI control algorithm in real-time. Identification is performed based on experimentally reported the transitional process by developing mathematical models. Presents the structure and capabilities of the models for identification, as well as procedures for their validation.

Page generated in 0.079 seconds