• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation d'une matrice d'échelle. / Scale matrix estimation

Haddouche, Mohamed Anis 31 October 2019 (has links)
Beaucoup de résultats sur l’estimation d’une matrice d’échelle en analyse multidimensionnelle sont obtenus sous l’hypothèse de normalité (condition sous laquelle il s’agit de la matrice de covariance). Or il s’avère que, dans des domaines tels que la gestion de portefeuille en finance, cette hypothèse n’est pas très appropriée. Dans ce cas, la famille des distributions à symétrie elliptique, qui contient la distribution gaussienne, est une alternative intéressante. Nous considérons dans cette thèse le problème d’estimation de la matrice d’échelle Σ du modèle additif Yp_m = M + E, d’un point de vue de la théorie de la décision. Ici, p représente le nombre de variables, m le nombre d’observations, M une matrice de paramètres inconnus de rang q < p et E un bruit aléatoire de distribution à symétrie elliptique, avec une matrice de covariance proportionnelle à Im x Σ. Ce problème d’estimation est abordé sous la représentation canonique de ce modèle où la matrice d’observation Y est décomposée en deux matrices, à savoir, Zq x p qui résume l’information contenue dans M et une matrice Un x p, où n = m - q, qui résume l’information suffisante pour l’estimation de Σ. Comme les estimateurs naturels de la forme Σa = a S (où S = UT U et a est une constante positive) ne sont pas de bons estimateurs lorsque le nombre de variables p et le rapport p=n sont grands, nous proposons des estimateurs alternatifs de la forme ^Σa;G = a(S + S S+G(Z; S)) où S+ est l’inverse de Moore-Penrose de S (qui coïncide avec l’inverse S-1 lorsque S est inversible). Nous fournissons des conditions sur la matrice de correction SS+G(Z; S) telles que ^Σa;G améliore^Σa sous le coût quadratique L(Σ; ^Σ) = tr(^ΣΣ‾1 - Ip)² et sous une modification de ce dernier, à savoir le coût basé sur les données LS (Σ; ^Σ) = tr(S+Σ(^ΣΣ‾1 - Ip)²). Nous adoptons une approche unifiée des deux cas où S est inversible et S est non inversible. À cette fin, une nouvelle identité de type Stein-Haff et un nouveau calcul sur la décomposition en valeurs propres de S sont développés. Notre théorie est illustrée par une grande classe d’estimateurs orthogonalement invariants et par un ensemble de simulations. / Numerous results on the estimation of a scale matrix in multivariate analysis are obtained under Gaussian assumption (condition under which it is the covariance matrix). However in such areas as Portfolio management in finance, this assumption is not well adapted. Thus, the family of elliptical symmetric distribution, which contains the Gaussian distribution, is an interesting alternative. In this thesis, we consider the problem of estimating the scale matrix _ of the additif model Yp_m = M + E, under theoretical decision point of view. Here, p is the number of variables, m is the number of observations, M is a matrix of unknown parameters with rank q < p and E is a random noise, whose distribution is elliptically symmetric with covariance matrix proportional to Im x Σ. It is more convenient to deal with the canonical forme of this model where Y is decomposed in two matrices, namely, Zq_p which summarizes the information contained in M, and Un_p, where n = m - q which summarizes the information sufficient to estimate Σ. As the natural estimators of the form ^Σ a = a S (where S = UT U and a is a positive constant) perform poorly when the dimension of variables p and the ratio p=n are large, we propose estimators of the form ^Σa;G = a(S + S S+G(Z; S)) where S+ is the Moore-Penrose inverse of S (which coincides with S-1 when S is invertible). We provide conditions on the correction matrix SS+G(Z; S) such that ^Σa;G improves over ^Σa under the quadratic loss L(Σ; ^Σ) = tr(^ΣΣ‾1 - Ip)² and under the data based loss LS (Σ; ^Σ) = tr(S+Σ(^ΣΣ‾1 - Ip)²).. We adopt a unified approach of the two cases where S is invertible and S is non-invertible. To this end, a new Stein-Haff type identity and calculus on eigenstructure for S are developed. Our theory is illustrated with the large class of orthogonally invariant estimators and with simulations.

Page generated in 0.0469 seconds