• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 657
  • 355
  • 100
  • 74
  • 64
  • 26
  • 22
  • 19
  • 14
  • 10
  • 9
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 1587
  • 1587
  • 421
  • 333
  • 328
  • 268
  • 263
  • 223
  • 206
  • 186
  • 169
  • 165
  • 131
  • 128
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Defining markers and mechanisms of human somatic cell reprogramming

Ratanasirintrawoot, Sutheera January 2013 (has links)
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by over expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Using serial live cell immunofluorescence imaging of human fibroblasts undergoing reprogramming, we traced the emergence of nascent iPS cell colonies among heterogeneous cell populations and defined the kinetics of marker expression. We identified distinct colony types that morphologically resemble embryonic stem (ES) cells yet differ in molecular phenotype and differentiation potential. By analyzing expression of pluripotency markers, methylation at the OCT4 and NANOG promoters, and differentiation into teratomas, we determined that only one colony type represented bona fide iPS cells, whereas the others represented reprogramming intermediates. Proviral silencing and expression of TRA-1-60, DNMT3B, and REX1 distinguished the fully reprogrammed state, whereas Alkaline Phosphatase, SSEA-4, GDF3, hTERT and NANOG proved insufficient as markers. Reprogramming in chemically defined medium favored formation of bona fide iPS cell colonies relative to partially reprogrammed colonies. These data highlight the need for rigorous characterization and standardization of putative iPS cells.
112

Stem Cell-Based Strategies to Study, Prevent, and Treat Cartilage Injury and Osteoarthritis

Diekman, Brian O'Callaghan January 2012 (has links)
<p><p> Articular cartilage is a smooth connective tissue that covers the ends of bones and protects joints from wear. Cartilage has a poor healing capacity, and the lack of treatment options motivates the development of tissue engineering strategies. The widespread cartilage degeneration associated with osteoarthritis (OA) is dramatically accelerated by joint injury, but the defined initiating event presents a therapeutic window for preventive treatments. In vitro model systems allow investigation of OA risk factors and screening of potential therapeutics. This dissertation develops stem-cell based strategies to 1) treat cartilage injury and OA using tissue-engineered cartilage, 2) prevent the development of OA by delivering stem cells to the joint after injury, and 3) study cartilage by establishing systems to model genetic and environmental contributors to OA.</p><p> Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are promising human adult cell sources for cartilage tissue engineering, but require distinct chondrogenic conditions. As compared to ASCs, MSCs demonstrated enhanced chondrogenesis in both alginate beads and cartilage-derived matrix scaffolds. </p><p> We hypothesized that MSC therapy would prevent post-traumatic arthritis (PTA) by altering the balance of inflammation and regeneration. Highly purified MSCs (CD45-TER119-PDGFR&#945;+Sca-1+) rapidly expanded under hypoxic conditions. Unexpectedly, MSCs from control C57BL/6 (B6) mice proliferated and differentiated more than MSCs from MRL/MpJ (MRL) "superhealer" mice. We injected B6 or MRL MSCs into mouse knees immediately after fracture, and MSCs of either strain were sufficient to prevent PTA. </p><p> Genetically reprogramming adult cells into induced pluripotent stem cells (iPSCs) generates large numbers of patient-matched cells with chondrogenic potential for therapy and cartilage modeling. We produced murine iPSC-derived cartilage constructs with a multi-phase approach involving micromass culture with bone morphogenetic protein-4, flow cytometry cell sorting of chondrocyte-like cells, monolayer expansion, and pellet culture with transforming growth factor-beta 3. Successful differentiation was confirmed by increased chondrogenic gene expression, robust synthesis of glycosaminoglycans and type II collagen, and the repair of an in vitro cartilage defect. </p><p> The diverse applications pursued in this research illustrate the power of stem cells to deepen the understanding of cartilage and guide the development of therapies to prevent and treat cartilage injury and OA.</p> / Dissertation
113

The methodology and significance of minimal residual disease detection after allogeneic stem cell transplantation /

Uzunel, Mehmet, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
114

Storage and transfusion of platelets in vitro and in vivo studies in healthy volunteers and in allogeneic hematopoetic progenitor cell transplant recipients /

Diedrich, Beatrice, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009.
115

Generation of a Human Induced Pluripotent Stem Cell Based Model of Progerin Induced Aging

January 2017 (has links)
abstract: An in vitro model of Alzheimer’s disease (AD) is required to study the poorly understood molecular mechanisms involved in the familial and sporadic forms of the disease. Animal models have previously proven to be useful in studying familial Alzheimer’s disease (AD) by the introduction of AD related mutations in the animal genome and by the overexpression of AD related proteins. The genetics of sporadic Alzheimer’s is however too complex to model in an animal model. More recently, AD human induced pluripotent stem cells (hiPSCs) have been used to study the disease in a dish. However, AD hiPSC derived neurons do not faithfully reflect all the molecular characteristics and phenotypes observed in the aged cells with neurodegenerative disease. The truncated form of nuclear protein Lamin-A, progerin, has been implicated in premature aging and is found in increasing concentrations as normal cells age. We hypothesized that by overexpressing progerin, we can cause cells to ‘age’ and display the neurodegenerative effects observed with aging in both diseased and normal cells. To answer this hypothesis, we first generated a retrovirus that allows for the overexpression of progerin in AD and non-demented control (NDC) hiPSC derived neural progenitor cells(NPCs). Subsequently, we generated a pure population of hNPCs that overexpress progerin and wild type lamin. Finally, we analyzed the presence of various age related phenotypes such as abnormal nuclear structure and the loss of nuclear lamina associated proteins to characterize ‘aging’ in these cells. / Dissertation/Thesis / Masters Thesis Bioengineering 2017
116

Autologous mesenchymal stem cells in nonunion fractures

Dreier, John Robert 21 February 2019 (has links)
The current gold standard of therapy for treatment of tibial fracture nonunion is iliac crest bone graft. However, this intervention is associated with significant morbidity to the donor site. Research into alternative interventions highlights the role of mesenchymal stem cells (MSCs). MSCs are capable of differentiating into mature, organized osseous tissue as well as recruiting local vascular cells. However, there are few prospective studies demonstrating the therapeutic potential of MSCs in fracture nonunion. The proposed study is a multicenter single-blinded controlled study of MSC application compared to iliac crest bone graft in the setting of fracture nonunion of the tibia. The study subjects will be evaluated at each return to care with mRUST radiographic scoring as well as Short-Form 12 evaluation of general health. These results will be correlated with MSC concentrations as assessed by FACS analysis. The data from this study will help to characterize MSCs as a possible therapeutic intervention in fracture nonunion.
117

miR-137 Regulates the Tumorigenicity of Colon Cancer Stem Cells through the Inhibition of DCLK1 / miR-137はDCLK1の抑制を介して大腸癌幹細胞の腫瘍形成能を制御する

Sakaguchi, Masazumi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20220号 / 医博第4179号 / 新制||医||1019(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 妹尾 浩, 教授 野田 亮, 教授 齊藤 博英 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
118

Dynamic effects of Wolbachia on Drosophila Oogenesis and coordination of infection with stem cell niche morphogenesis

Fast, Eva M. 22 January 2016 (has links)
Wolbachia are widespread obligate intracellular bacteria that are maternally transmitted and modulate reproduction of their invertebrate host. Mosquitoes transinfected with Wolbachia have reduced capacity for transmitting vector borne diseases and can replace native populations in the field because of a reproductive advantage. The cellular mechanisms of how reproduction is altered by Wolbachia are poorly understood. In this work Wolbachia-induced reproductive changes in the model organism Drosophila were used to pinpoint underlying cellular processes affected by the bacteria. Specifically, egg production (or fecundity) of Wolbachia-infected Drosophila mauritiana was compared to non-infected flies that had been generated by antibiotic treatment of infected flies. Immediately before the fecundity experiment backcrossing of both fly lines ensured an equivalent nuclear genetic background. Initially egg production in Wolbachia-infected flies was increased by 4-fold but in less than 30 generations this changed to a 0.84 fold decrease with a slight advantage for the non-infected line. Additional backcrossing experiments determined that selection on the host nuclear genome is one of the factors underlying this reversion of fecundity gains. Other non-Mendelian factors, such as the microbiota, may also play a role in this rapid change. Wolbachia alterations in egg production were always linked to Wolbachia induced changes in programmed cell death (PCD) in the germarium during oogenesis and germline stem cell (GSC) division. Germline stem cells are maintained and regulated through their interaction with the germline stem cell niche (GSCN). Interestingly, these cells are both frequently infected with Wolbachia and possess a high bacterial titer. A developmental time course revealed the mechanism of how Wolbachia accumulate in the niche cells. The data suggest that the bacteria actually coordinate their replication with the differentiation of the niche cells. Future work on understanding the cellular and molecular basis of Wolbachia - host interaction will not only give insight into novel mechanisms of host manipulation by a pathogen, but will also expand our current understanding of stem cell niche morphogenesis and modulation of stem cell proliferation. / 2018-06-05T00:00:00Z
119

Dose Response Analysis of Bone Marrow-Derived Mesenchymal Stem Cells for Treatment in Fascial Wound Repair

Morse, Zachary J. 05 October 2015 (has links)
No description available.
120

Bioinformatics Analysis of Vasorin in Gliomas

Yu, Jennifer 06 June 2017 (has links)
No description available.

Page generated in 0.1715 seconds