Spelling suggestions: "subject:"items botany"" "subject:"items motany""
11 |
Genetic analysis of stalk strength in maizeFlint-Garcia, Sherry A. January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 143-149). Also available on the Internet.
|
12 |
An investigation of paedomorphic secondary xylem and secondary woodiness in Xanthorhiza simplicissima, Coreopsis gigantea, and Mahonia bealeiDulin, Max W. January 1900 (has links)
Dissertation (M.S.)--The University of North Carolina at Greensboro, 2008. / Directed by Bruce Kirchoff; submitted to the Dept. of Biology. Title from PDF t.p. (viewed Feb. 2, 2010). Includes bibliographical references (p. 134-146).
|
13 |
Instability in plantations of container-grown Scots pine and consequences on stem form and wood properties /Rune, Göran. January 2003 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2003. / Thesis documentation sheet inserted. Appendix includes reproductions of four papers and manuscripts, three co-authored with others. Includes bibliographical references. Abstract also available online.
|
14 |
Water status determination by sensing stem diameter in cotton plantsDiaz-Munoz, Fidel January 1981 (has links)
No description available.
|
15 |
Inter- and intraspecific variation of stemflow production from Fagus grandifolia and Liriodendron tulipifera effects of bark microrelief & meteorological conditions /Stan, John Toland van. January 2009 (has links)
Thesis (M.A.)--University of Delaware, 2008. / Principal faculty advisor: Delphis F. Levia, Dept. of Geography. Includes bibliographical references.
|
16 |
Stand structure development effects on wood quality of Melina (Gmelina arborea roxb.)Gonzalez Rubio, Hector Larsen, David R. January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 15, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. David Larsen Vita. Includes bibliographical references.
|
17 |
Über den Einfluss allseitiger radialer Wachstumshemmung auf die innere Differenzierung des PflanzenstengelsGrabert, Wilhelm. January 1914 (has links)
Thesis (doctoral)--Friedricks-Universität Halle-Wittenberg, 1914. / Includes bibliographical references (p. [54]).
|
18 |
The metabolic fate of sucrose in intact sugarcane internodal tissue.McDonald, Zac. January 2000 (has links)
The study was aimed at determining the metabolic fate of sucrose in intact
sugarcane internodal tissue. Three aspects of the fate of sucrose in storage
tissue of whole plants formed the main focus of the work. These were the rate of
sucrose accumulation in the developing culm, the characterisation of partitioning
of carbon into different cellular organic fractions in the developing culm and the
occurrence of sucrose turnover in both immature and mature stem tissues.
Specific attention was paid to confirming the occurrence of sucrose turnover in
both immature and mature internodal tissue. This sucrose turnover has been
described previously in both tissue slices and cell suspension cultures. However,
certain results from previous work at the whole plant level have indicated that
sucrose turnover does not occur in mature internodal tissue.
Radiolabeled carbon dioxide (14CO2) was fed to leaf 6 of sugarcane culms of a
high sucrose storing variety (Saccharum spp. hybrid cv. Nco376). All plants were
of similar age (12 months) and were grown under similar conditions. The
movement and metabolic fate of radiolabeled sucrose was determined at four
time points, (6 hours, 24 hours, 7 days and 6 weeks) during a 6 week period.
The metabolic fate of sucrose was determined in internodes number 3, number 6
and number 9. Internode 3 was found to have a relatively high hexose sugar
content of 42 mg glc&fruc fw g-1 and a low sucrose content of 14 mg suc fw g-1.
In contrast the sucrose content of internode 9 was much higher at 157 mg suc fw
g-1 and the hexose sugar content much lower at 4.3 mg glc&fruc fw g-1. Based
on previous work, the sugar content of internode 3 and internode 9 are
characteristic of immature and mature tissues respectively. Internode 6 occupies
an intermediary position between internode 3 and 6 with its sucrose content
higher than its hexose sugar content, but with the hexose sugar content still
being notable at 15 mg glc&fruc fw g-1.
Although the metabolic fate of sucrose within sink tissue was the focal point of
the study, the experimental design also allowed for certain aspects of sucrose
production in the source to be investigated. The average photosynthetic rate for
leaf 6 in full sunlight was estimated at 48 mg CO2 dm-2 s -1. During
photosynthesis, only 30% of the fixed carbon was partitioned into the storage
carbohydrate pool while the remaining 70% was partitioned into sucrose for
immediate export from the leaf. This high rate of carbon fixation combined with a
high rate of carbon export is characteristic of C4 plants such as sugarcane.
On entering the culm, translocation of radiolabeled sucrose was predominantly
basipetal with relatively little acropetal translocation. The majority of the
radiolabeled carbon was found to be stored in mature internodes. No significant
loss of radiolabeled carbon was observed in mature and elongating internodes
over the study period. A 22% loss of total radiolabeled carbon was observed in
immature internodes over the same period. This can probably be attributed to
the higher rates of cellular respiration known to occur in immature tissues.
There appear to be three phases of sucrose accumulation in the developing
culm. Initially, the accumulation rate in rapidly growing tissue, as internode 3
develops into internode 6, is relatively low. This is followed by a rapid increase in
the rate of sucrose accumulation during internode elongation, as internode 6
becomes internode 9. Finally, a decrease in the rate of sucrose accumulation is
observed during late maturation, as internode 9 becomes internode 12.
Determination of the sucrose content in internodes 3, 6 and 9 revealed that there
is a notable increase in sucrose content during internode maturation. It is
proposed that the higher sucrose content of mature tissue is not merely a
consequence of the longer growth period of mature tissue, but is due to the
increased rate of sucrose accumulation observed during internode elongation.
Short-term (24 hours) analysis of carbon partitioning revealed that intemodal
maturation was associated with a redirection of carbon from non-sucrose cellulal
organic fractions to sucrose storage. In immature internodes only 20% of the
total radiolabeled carbon was present in the sucrose pool 24 hours after feeding.
In elongating internodes the figure increased to 54% while in mature internodes
as much as 77% of the total radiolabeled carbon was retained in the sucrose
pool. Concomitant with the increased carbon partitioning into stored sucrose
down the developing culm is a decrease in carbon partitioning into the hexose
sugar pool. In immature tissue, 42 % of the total radiolabel is present in the
hexose sugar pool, while in mature tissue the percentage drops to 11%. This
decrease is probably indicative of decreased levels of carbon cycling between
the sucrose and hexose sugar pool as a result of internode maturation.
Internode maturation was also found to be associated with a decrease in the
amount of carbon in the water insoluble matter pool and the amino acid/ organic
acid/ sugar phosphate pool. Thus, internode maturation is associated with a
redirection of carbon from total respiration to sucrose storage. Long-term (6
weeks) analysis of carbon partitioning confirmed that sucrose storage in mature
tissue is greater than that in immature tissue. From the 6 hour time point to the 6
week time point, an 87% reduction in the stored radiolabeled sucrose content
was observed in immature internodes. During the same period only a 25%
reduction in the stored radiolabeled sucrose was observed in mature internodes.
Radiolabel loss from the radiolabeled sucrose pool in both mature and immature
internodes was accounted for by relative radiolabel gains in other cellular organic
fractions.
At all time points during the study, and in all three tissues studied, radiolabel was
found in the sucrose pool, the hexose sugars pool, the ionic pool and the water
insoluble matter pool. The occurrence of radiolabel in the non-sucrose tissue
constituents suggests that sucrose turnover is occurring in both immature, and
mature internodal tissue. / Thesis (M.Sc.)-University of Natal, Durban, 2000.
|
19 |
Pyrophosphate dependent phosphofructokinsase (PFP) activity and other aspects of sucrose metabolism in sugarcane internodal tissues.Whittaker, Anne. January 1997 (has links)
The biochemical basis for the regulation of sucrose accumulation is not fully
understood. The present study was thus aimed at investigating aspects of 'coarse' (enzyme activity) and 'fine' (metabolite) control of glycolytic enzyme activity in relation to carbon partitioning in the developing stalk (internodes 3 to 10), and between varieties with significant differences in sucrose content. Particular emphasis was placed on studying pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90), since this enzyme has been implicated in sucrose metabolism in other plant species. Within the developing stalk, internodal maturation was associated with a redirection carbon from the insoluble matter and total respiration (C02 production and biosynthesis) to sucrose storage. Between varieties, with significant variation in sucrose content, there was an inverse relationship between hexose monophosphate partitioning into respiration and sucrose. The reduction in carbon flux to respiration was not associated with a decline in the extractable specific activity of PK, PFK and PFP. There was also no alteration in the regulation of PK, PFK and FBPase by change
in the mass action ratios. Hexose monophosphate concentration declined
approximately two to three-fold from internodes 3 to 9 and Fru-6-P concentration was within the lower Km or 80.5 range (Fru-6-P) of PFP and PFK, respectively (as reported from the literature) . Within the developing stalk, substrate limitation might have contributed to the decline in carbon partitioning to respiration. In sugarcane, the levels of PFP activity were controlled in part by PFP protein expression. 8ugarcane PFP polypeptide(s) are resolved as a single protein with a molecular mass of approximately 72 kO. PFP catalysed a reaction close to equilibrium in all intemodes investigated, and the concentration of Fru-2,6-P2 was shown to be in
excess of the requirement to stimulate PFP activity. Carbon flux from the triose-P to hexose monophosphate pool was apparent in sugarcane, suggesting that PFP activity was functional in vivo. The developmental profile of specific PFP activity was not positively correlated to the increasing rate of sucrose accumulation in the top ten internodes of the developing stalk. Between different sugarcane varieties, specific PFP activity was shown to be inversely correlated to sucrose content. / Thesis (Ph.D.)-University of Natal, Durban, 1997.
|
20 |
Gauchissement de la tige et croissance de semis de conifère traités à l'éthylène et soumis à l'anaérobiose racinaire /Walsh, Denis. January 1993 (has links)
Mémoire (M.Ress.Renouv.)-- Université du Québec à Chicoutimi, 1993. / Bibliogr.: f. 145-153. Document électronique également accessible en format PDF. CaQCU
|
Page generated in 0.0507 seconds