Spelling suggestions: "subject:"stereovision"" "subject:"stereocision""
181 |
Ανάπτυξη αποδοτικών παραμετρικών τεχνικών αντιστοίχισης εικόνων με εφαρμογή στην υπολογιστική όρασηΕυαγγελίδης, Γεώργιος 12 January 2009 (has links)
Μια από τις συνεχώς εξελισσόμενες περιοχές της επιστήμης των υπολογιστών είναι η Υπολογιστική Όραση, σκοπός της οποίας είναι η δημιουργία έξυπνων συστημάτων για την ανάκτηση πληροφοριών από πραγματικές εικόνες. Πολλές σύγχρονες εφαρμογές της υπολογιστικής όρασης βασίζονται στην αντιστοίχιση εικόνων. Την πλειοψηφία των αλγορίθμων αντιστοίχισης συνθέτουν παραμετρικές τεχνικές, σύμφωνα με τις οποίες υιοθετείται ένα παραμετρικό μοντέλο, το οποίο εφαρμοζόμενο στη μια εικόνα δύναται να παρέχει μια προσέγγιση της άλλης. Στο πλαίσιο της διατριβής μελετάται εκτενώς το πρόβλημα της Στερεοσκοπικής Αντιστοίχισης και το γενικό πρόβλημα της Ευθυγράμμισης Εικόνων. Για την αντιμετώπιση του πρώτου προβλήματος προτείνεται ένας τοπικός αλγόριθμος διαφορικής αντιστοίχισης που κάνει χρήση μιας νέας συνάρτησης κόστους, του Τροποποιημένου Συντελεστή Συσχέτισης (ECC), η οποία ενσωματώνει το παραμετρικό μοντέλο μετατόπισης στον κλασικό συντελεστή συσχέτισης. Η ενσωμάτωση αυτή καθιστά τη νέα συνάρτηση κατάλληλη για εκτιμήσεις ανομοιότητας με ακρίβεια μικρότερη από αυτήν του εικονοστοιχείου. Αν και η συνάρτηση αυτή είναι μη γραμμική ως προς την παράμετρο μετατόπισης, το πρόβλημα μεγιστοποίησης έχει κλειστού τύπου λύση με αποτέλεσμα τη μειωμένη πολυπλοκότητα της διαδικασίας της αντιστοίχισης με ακρίβεια υπο-εικονοστοιχείου. Ο προτεινόμενος αλγόριθμος παρέχει ακριβή αποτελέσματα ακόμα και κάτω από μη γραμμικές φωτομετρικές παραμορφώσεις, ενώ η απόδοσή του υπερτερεί έναντι γνωστών στη διεθνή βιβλιογραφία τεχνικών αντιστοίχισης ενώ φαίνεται να είναι απαλλαγμένος από το φαινόμενο pixel locking. Στην περίπτωση του προβλήματος της ευθυγράμμισης εικόνων, η προτεινόμενη συνάρτηση γενικεύεται με αποτέλεσμα τη δυνατότητα χρήσης οποιουδήποτε δισδιάστατου μετασχηματισμού. Η μεγιστοποίησή της, η οποία αποτελεί ένα μη γραμμικό πρόβλημα, επιτυγχάνεται μέσω της επίλυσης μιας ακολουθίας υπο-προβλημάτων βελτιστοποίησης. Σε κάθε επανάληψη επιβάλλεται η μεγιστοποίηση μιας μη γραμμικής συνάρτησης του διανύσματος διορθώσεων των παραμέτρων, η οποία αποδεικνύεται ότι καταλήγει στη λύση ενός γραμμικού συστήματος. Δύο εκδόσεις του σχήματος αυτού προτείνονται: ο αλγόριθμος Forwards Additive ECC (FA-ECC) και o αποδοτικός υπολογιστικά αλγόριθμος Inverse Compositional ECC (IC-ECC). Τα προτεινόμενα σχήματα συγκρίνονται με τα αντίστοιχα (FA-LK και SIC) του αλγόριθμου Lucas-Kanade, ο οποίος αποτελεί σημείο αναφοράς στη σχετική βιβλιογραφία, μέσα από μια σειρά πειραμάτων. Ο αλγόριθμος FA-ECC παρουσιάζει όμοια πολυπλοκότητα με τον ευρέως χρησιμοποιούμενο αλγόριθμο FA-LΚ και παρέχει πιο ακριβή αποτελέσματα ενώ συγκλίνει με αισθητά μεγαλύτερη πιθανότητα και ταχύτητα. Παράλληλα, παρουσιάζεται πιο εύρωστος σε περιπτώσεις παρουσίας προσθετικού θορύβου, φωτομετρικών παραμορφώσεων και υπερ-μοντελοποίησης της γεωμετρικής παραμόρφωσης των εικόνων. Ο αλγόριθμος IC-ECC κάνει χρήση της αντίστροφης λογικής, η οποία στηρίζεται στην αλλαγή των ρόλων των εικόνων αντιστοίχισης και συνδυάζει τον κανόνα ενημέρωσης των παραμέτρων μέσω της σύνθεσης των μετασχηματισμών. Τα δύο αυτά χαρακτηριστικά έχουν ως αποτέλεσμα τη δραστική μείωση του υπολογιστικού κόστους, ακόμα και σε σχέση με τον SIC αλγόριθμο, με τον οποίο βέβαια παρουσιάζει παρόμοια συμπεριφορά. Αν και ο αλγόριθμος FA-ECC γενικά υπερτερεί έναντι των τριών άλλων αλγορίθμων, η επιλογή μεταξύ των δύο προτεινόμενων σχημάτων εξαρτάται από το λόγο μεταξύ ακρίβειας αντιστοίχισης και υπολογιστικού κόστους. / Computer Vision has been recently one of the most active research areas in computer society. Many modern computer vision applications require the solution of the well known image registration problem which consist in finding correspondences between projections of the same scene. The majority of registration algorithms adopt a specific parametric transformation model, which is applied to one image, thus providing an approach of the other one. Towards the solution of the Stereo Correspondence problem, where the goal is the construction of the disparity map, a local differential algorithm is proposed which involves a new similarity criterion, the Enhanced Correlation Coefficient (ECC). This criterion is invariant to linear photometric distortions and results from the incorporation of a single parameter model into the classical correlation coefficient, defining thus a continuous objective function. Although the objective function is non-linear in translation parameter, its maximization results in a closed form solution, saving thus much computational burden. The proposed algorithm provides accurate results even under non-linear photometric distortions and its performance is superior to well known conventional stereo correspondence techniques. In addition, the proposed technique seems not to suffer from pixel locking effect and outperforms even stereo techniques, dedicated to the cancellation of this effect. For the image alignment problem, the maximization of a generalized version of ECC function that incorporates any 2D warp transformation is proposed. Although this function is a highly non-linear function of the warp parameters, an efficient iterative scheme for its maximization is developed. In each iteration of the new scheme, an efficient approximation of the nonlinear objective function is used leading to a closed form solution of low computational complexity. Two different iterative schemes are proposed; the Forwards Additive ECC (FA-ECC) and the Inverse Compositional ECC (IC-ECC) algorithm. Τhe proposed iterative schemes are compared with the corresponding schemes (FA-LK and SIC) of the leading Lucas-Kanade algorithm, through a series of experiments. FA-ECC algorithm makes use of the known additive parameter update rule and its computational cost is similar to the one required by the most widely used FA-LK algorithm. The proposed iterative scheme exhibits increased learning ability, since it converges faster with higher probability. This superiority is retained even in presence of additive noise and photometric distortion, as well as in cases of over-modelling the geometric distortion of the images. On the other hand, IC-ECC algorithm makes use of inverse logic by swapping the role of images and adopts the transformation composition update rule. As a consequence of these two options, the complexity per iteration is drastically reduced and the resulting algorithm constitutes the most computationally efficient scheme than three other above mentioned algorithms. However, empirical learning curves and probability of convergence scores indicate that the proposed algorithm has a similar performance to the one exhibited by SIC. Though FA-ECC seems to be clearly more robust in real situation conditions among all the above mentioned alignment algorithms, the choice between two proposed schemes necessitates a trade-off between accuracy and speed.
|
182 |
3D Rekonstrukce historických míst z obrázků na Flickru / 3D Reconstruction of Historic Landmarks from Flickr PicturesŠimetka, Vojtěch January 2015 (has links)
Tato práce popisuje problematiku návrhu a vývoje aplikace pro rekonstrukci 3D modelů z 2D obrazových dat, označované jako bundle adjustment. Práce analyzuje proces 3D rekonstrukce a důkladně popisuje jednotlivé kroky. Prvním z kroků je automatizované získání obrazové sady z internetu. Je představena sada skriptů pro hromadné stahování obrázků ze služeb Flickr a Google Images a shrnuty požadavky na tyto obrázky pro co nejlepší 3D rekonstrukci. Práce dále popisuje různé detektory, extraktory a párovací algoritmy klíčových bodů v obraze s cílem najít nejvhodnější kombinaci pro rekonstrukci budov. Poté je vysvětlen proces rekonstrukce 3D struktury, její optimalizace a jak je tato problematika realizovaná v našem programu. Závěr práce testuje výsledky získané z implementovaného programu pro několik různých datových sad a porovnává je s výsledky ostatních podobných programů, představených v úvodu práce.
|
183 |
Návrh nové metody pro stereovidění / Design of a New Method for StereovisionKopečný, Josef January 2008 (has links)
This thesis covers with the problems of photogrammetry. It describes the instruments, theoretical background and procedures of acquiring, preprocessing, segmentation of input images and of the depth map calculating. The main content of this thesis is the description of the new method of stereovision. Its algorithm, implementation and evaluation of experiments. The covered method belongs to correlation based methods. The main emphasis lies in the segmentation, which supports the depth map calculation.
|
184 |
Towards Dense Visual SLAMPietzsch, Tobias 05 December 2011 (has links) (PDF)
Visual Simultaneous Localisation and Mapping (SLAM) is concerned with simultaneously estimating the pose of a camera and a map of the environment from a sequence of images. Traditionally, sparse maps comprising isolated point features have been employed, which facilitate robust localisation but are not well suited to advanced applications. In this thesis, we present map representations that allow a more dense description of the environment. In one approach, planar features are used to represent textured planar surfaces in the scene. This model is applied within a visual SLAM framework based on the Extended Kalman Filter. We presents solutions to several challenges which arise from this approach.
|
185 |
Towards Dense Visual SLAMPietzsch, Tobias 07 June 2011 (has links)
Visual Simultaneous Localisation and Mapping (SLAM) is concerned with simultaneously estimating the pose of a camera and a map of the environment from a sequence of images. Traditionally, sparse maps comprising isolated point features have been employed, which facilitate robust localisation but are not well suited to advanced applications. In this thesis, we present map representations that allow a more dense description of the environment. In one approach, planar features are used to represent textured planar surfaces in the scene. This model is applied within a visual SLAM framework based on the Extended Kalman Filter. We presents solutions to several challenges which arise from this approach.
|
Page generated in 0.0469 seconds