Spelling suggestions: "subject:"stereospecificity"" "subject:"steriospecificity""
11 |
La tagatose-1,6-bisphosphate aldolase et la fructose-1,6-bisphosphate aldolase de classe I : mécanisme et stéréospécificitéLow-Kam, Clotilde Jeanne M. 08 1900 (has links)
La tagatose-1,6-biphosphate aldolase de Streptococcus pyogenes est une aldolase qui fait preuve d'un remarquable manque de spécificité vis à vis de ses substrats. En effet, elle catalyse le clivage réversible du tagatose-1,6-bisphosphate (TBP), mais également du fructose-1,6-bisphosphate (FBP), du sorbose-1,6-bisphosphate et du psicose-1,6-bisphosphate, quatre stéréoisomères, en dihydroxyacétone phosphate (DHAP) et en glycéraldéhyde-3-phosphate (G3P). Aldolase de classe I, qui donc catalyse sa réaction en formant un intermédiaire covalent obligatoire, ou base de Schiff, avec son susbtrat, la TBP aldolase de S. pyogenes partage 14 % d’identité avec l’enzyme modèle de cette famille, la FBP aldolase de muscle de mammifère. Bien que le mécanime catalytique de la FBP aldolase des mammifères ait été examiné en détails et qu’il soit approprié d’en tirer des renseignements quant à celui de la TBP aldolase, le manque singulier de stéréospécificité de cette dernière tant dans le sens du clivage que celui de la condensation n’est toujours pas éclairci. Afin de mettre à jour les caractéristiques du mécanisme enzymatique, une étude structurale de la TBP aldolase de S. pyogenes, un pathogène humain extrêmement versatile, a été entreprise. Elle a permis la résolution des structures de l’enzyme native et mutée, en complexe avec des subtrats et des inhibiteurs compétitifs, à des résolutions comprises entre 1.8 Å et 2.5 Å. Le trempage des cristaux de TBP aldolase native et mutante dans une solution saturante de FBP ou TBP a en outre permis de piéger un authentique intermédiaire covalent lié à la Lys205, la lysine catalytique. La determination des profils pH de la TBP aldolase native et mutée, entreprise afin d'évaluer l’influence du pH sur la réaction de clivage du FBP et TBP et ìdentifier le(s) résidu(s) impliqué(s), en conjonction avec les données structurales apportées par la cristallographie, ont permis d’identifier sans équivoque Glu163 comme résidu responsable du clivage. En effet, le mode de liaison sensiblement différent des ligands utilisés selon la stéréochimie en leur C3 et C4 permet à Glu163, équivalent à Glu187 dans la FBP aldolase de classe I, d’abstraire le proton sur l’hydroxyle du C4 et ainsi d’amorcer le clivage du lien C3-C4. L’étude du mécanimse inverse, celui de la condensation, grâce par exemple à la structure de l’enzyme native en complexe avec ses substrats à trois carbones le DHAP et le G3P, a en outre permis d’identifier un isomérisme du substrat G3P comme possible cause de la synthèse des isomères en C4 par cette enzyme. Ce résultat, ainsi que la decouverte d’un possible isomérisme cis-trans autour du lien C2-C3 de la base de Schiff formée avec le DHAP, identifié précedemment, permet de cerner presque complètement les particularités du mécanisme de cette enzyme et d’expliquer comment elle est capable de synthétiser les quatres stéréoisomères 3(S/R), 4(S/R). De plus, la résolution de ces structures a permis de mettre en évidence trois régions très mobiles de la protéine, ce qui pourrait être relié au rôle postulé de son isozyme chez S. pyogenes dans la régulation de l’expression génétique et de la virulence de la bactérie.
Enfin, la résolution de la structure du mutant Lys229→Met de la FBP aldolase de muscle en complexe avec la forme cyclique du FBP, de même que des études cristallographiques sur le mutant équivalent Lys205→Met de la TBP aldolase de S. pyogenes et des expériences de calorimétrie ont permis d’identifier deux résidus particuliers, Ala31 et Asp33 chez la FBP aldolase, comme possible cause de la discrimination de cette enzyme contre les substrats 3(R) et 4(S), et ce par encombrement stérique des substrats cycliques.
La cristallographie par rayons X et la cinétique enzymatique ont ainsi permis d'avancer dans l'élucidation du mécanisme et des propriétés structurales de cette enzyme aux caractéristiques particulières. / Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that shows a lack of stereospecificity that is rare in enzymes in general, and in aldolases in particular. This aldolase catalyzes the reversible cleavage of tagatose-1,6-bisphosphate (TBP), fructose-1,6-bisphosphate (FBP), sorbose-1,6-bisphosphate and psicose-1,6-bisphosphate, four stereoisomers, in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). A class I aldolase, the aldolase TBP S. pyogenes shares 14 % identity with the model enzyme of this family, mammalian FBP aldolase. Although the catalytic mechanism of the class I FBP aldolase has been examined in detail and it is appropriate to infer information as to the class I TBP aldolase, the singular lack of specificity of the latter enzyme both in the direction of cleavage and condensation is still not elucidated. To better comprehend the characteristics of the enzymatic mechanism, a structural study of the TBP aldolase of S. pyogenes, an extremely versatile human pathogen, has been undertaken. It has allowed the resolution of high resolution structures of the native and mutated enzyme in complex with subtrates and competitive inhibitors. These same structures allowed us to gain information as to the active site of the enzyme in general and the catalytic residues in particular. TBP aldolase native and mutated soaked in a saturated solution of FBP or TBP also trapped an iminium intermediate covalenty bound to Lys205, the Schiff base-forming lysine. The determination of the pH profiles of the native and mutated enzyme, carried out to assess the influence of pH on FBP and TBP cleavage and identify the residue(s) involved, in conjunction with the structural data provided by crystallography, identified unequivocally Glu163, corresponding to Glu187 in FBP aldolase, as the residue responsible for substrate cleavage. The substantially different binding mode of the ligands, according to the stereochemistry of their C3 and C4 carbons, indeed allows Glu163 to abstract the proton in C3-OH and thus initiate C3-C4 bond cleavage. The study of the inverse mechanism, the condensation one, using for instance the crystallographic structure of native TBP aldolase in complex with DHAP and G3P, its three carbons substrates, has led us to believe that a possible isomerism of the G3P substrate was the reason for the synthesis of both C4 isomers by this enzyme. This result, as well as the discovery of a possible cis-trans isomerism around the C2-C3 bond of the Schiff base formed with DHAP, identified previously, almost completely elucidated the features of this enzyme`s mechanism. In addition, these structures have highlighted three highly mobile regions of the protein, which may be related to the role of its isozyme in the regulation of gene expression and virulence in S. pyogenes.
Lastly, the resolution of the structure of the FBP aldolase mutant Lys229 → Met in complex with the cyclic form of FBP, as well as crystallographic studies of the corresponding mutant in TBP aldolase, Lys205→Met and ITC experiments, allowed the identification of two particular residues, Ala31 and Asp33 in FBP aldolase, as responsible for this enzyme discrimination against 3(R) 4(S) substrates, by steric hindrance of the cyclic substrates.
X-ray crystallography, enzyme kinetics and isothermal calorimetry thus enabled advances in the elucidation of the mechanism and structural properties of this enzyme with singular characteristics.
|
Page generated in 0.0479 seconds