• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The polarization of small angle X-ray scattering from cold worked metals

Webb, M. B. January 1956 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1956. / Typescript. Abstracted in Dissertation abstracts, v. 16 (1956) no. 11, p. 2187. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves [95]-[96]).
2

Etude structurale et fonctionnelle de la protéine PGRP-LF impliquée dans la régulation négativede la voie IMD de la drosophile. / Structural and functional study of PGRP-LF involved in the negative regulation of the IMD pathway in Drosophila.

Basbous, Nada 19 May 2011 (has links)
La drosophile se défend contre les infections microbiennes par un ensemble de réponses immunitaires très efficaces comme la synthèse de peptides antimicrobiens. L’expression de ces peptides antimicrobiens est contrôlée par deux voies indépendantes : la voie Toll et la voie IMD. La voie IMD est activée par PGRP-LC, une protéine de la famille PGRP (Peptidoglycan Recognition Protein). PGRP-LF est un régulateur négatif spécifique de la voie IMD. Il a été proposé que cette protéinepourrait agir spécifiquement au niveau du récepteur PGRP-LC, en séquestrant le ligand peptidoglycane (PGN) et en empêchant son accès à PGRP-LC. Mon travail de thèse a été de résoudre la structure des deux domaines PGRP de PGRP-LF, LFz et LFw, dans le but de caractériser le mécanisme de régulation par cette protéine.J’ai exprimé le domaine LFz dans des cellules S2 et le domaine LFw dans des bactéries. J’ai résolu la structure cristallographique de LFz à la résolution de 1.72Å et celle de LFw à la résolution de 1.94Å. Les structures de LFz et LFw montrent qu’elles ne possèdent pas la crevasse de liaison classique des PGRP, et ne peuvent pas interagir avec le PGN. J’ai confirmé ces résultats structuraux par des étudesbiochimiques de liaison des ces domaines à du PGN insoluble. L’aspect de régulation par PGRP-LF, par une séquestration du PGN, n’est donc valide. J’ai cloné et exprimé dans des cellules S2 les protéines PGRP-LCx et PGRP-LCa (partenaire du complexe activateur de la voie IMD) dans le but d’étudier leur interaction avec PGRP-LF. J’ai mis en évidence, par des analyses de résonnance plasmonique de surface, une interaction entre PGRP-LF et PGRP-LCx en absence et en présence duPGN. Ces données nous permettent de proposer un modèle dans lequel PGRP-LF assure la régulation négative de la voie IMD par compétition avec PGRP-LCa pour la liaison au récepteur PGRP-LCx. / The fruit fly defends itself against microbial infections by a set of highly effective immune responses that involve the synthesis of antimicrobial peptides. The expression of these antimicrobial peptides is controlled by two independent pathways: the Toll pathway and the IMD pathway. The IMD pathwayis activated by PGRP-LC, a protein of the PGRP family (Peptidoglycan Recognition Protein). PGRPLF is a specific negative regulator of the IMD pathway. It has been proposed that this protein specifically acts at the receptor PGRP-LC, by sequestering peptidoglycan (PGN) and preventing its access to PGRP-LC. My thesis work aims to solve the structure of the two PGRP domains of PGRPLF, LFz and LFw, in order to characterize the mechanism of regulation by this protein. I have expressed the LFz domain in S2 cells and the LFw domain in bacteria. I have solved the crystalstructure of LFz at 1.72 Å resolution and that of LFw at 1.94Å resolution. Structures of LFz and LFw show they do not possess the classical binding cleft found in others PGRP, and cannot interact with the PGN. I have confirmed these structural results with biochemical studies of binding of these domains with insoluble PGN. The model of regulation by PGRP-LF, by a sequestration of PGN, is no longer valid. I have cloned and expressed in S2 cells PGRP-LCx and PGRP-LCa proteins (partners of theactivating complex of the IMD pathway) in order to elucidate whether there is direct interaction between PGRP LF and one of two isoforms of PGRP-LC. I have demonstrated, through Surface Plasmon Resonance analysis, an interaction between PGRP-LF and PGRP-LCx. Actually, PGRP-LF regulates negatively the IMD pathway by competing with PGRP-LCa to bind to the PGRP-LCx receptor.
3

La tagatose-1,6-bisphosphate aldolase et la fructose-1,6-bisphosphate aldolase de classe I : mécanisme et stéréospécificité

Low-Kam, Clotilde Jeanne M. 08 1900 (has links)
La tagatose-1,6-biphosphate aldolase de Streptococcus pyogenes est une aldolase qui fait preuve d'un remarquable manque de spécificité vis à vis de ses substrats. En effet, elle catalyse le clivage réversible du tagatose-1,6-bisphosphate (TBP), mais également du fructose-1,6-bisphosphate (FBP), du sorbose-1,6-bisphosphate et du psicose-1,6-bisphosphate, quatre stéréoisomères, en dihydroxyacétone phosphate (DHAP) et en glycéraldéhyde-3-phosphate (G3P). Aldolase de classe I, qui donc catalyse sa réaction en formant un intermédiaire covalent obligatoire, ou base de Schiff, avec son susbtrat, la TBP aldolase de S. pyogenes partage 14 % d’identité avec l’enzyme modèle de cette famille, la FBP aldolase de muscle de mammifère. Bien que le mécanime catalytique de la FBP aldolase des mammifères ait été examiné en détails et qu’il soit approprié d’en tirer des renseignements quant à celui de la TBP aldolase, le manque singulier de stéréospécificité de cette dernière tant dans le sens du clivage que celui de la condensation n’est toujours pas éclairci. Afin de mettre à jour les caractéristiques du mécanisme enzymatique, une étude structurale de la TBP aldolase de S. pyogenes, un pathogène humain extrêmement versatile, a été entreprise. Elle a permis la résolution des structures de l’enzyme native et mutée, en complexe avec des subtrats et des inhibiteurs compétitifs, à des résolutions comprises entre 1.8 Å et 2.5 Å. Le trempage des cristaux de TBP aldolase native et mutante dans une solution saturante de FBP ou TBP a en outre permis de piéger un authentique intermédiaire covalent lié à la Lys205, la lysine catalytique. La determination des profils pH de la TBP aldolase native et mutée, entreprise afin d'évaluer l’influence du pH sur la réaction de clivage du FBP et TBP et ìdentifier le(s) résidu(s) impliqué(s), en conjonction avec les données structurales apportées par la cristallographie, ont permis d’identifier sans équivoque Glu163 comme résidu responsable du clivage. En effet, le mode de liaison sensiblement différent des ligands utilisés selon la stéréochimie en leur C3 et C4 permet à Glu163, équivalent à Glu187 dans la FBP aldolase de classe I, d’abstraire le proton sur l’hydroxyle du C4 et ainsi d’amorcer le clivage du lien C3-C4. L’étude du mécanimse inverse, celui de la condensation, grâce par exemple à la structure de l’enzyme native en complexe avec ses substrats à trois carbones le DHAP et le G3P, a en outre permis d’identifier un isomérisme du substrat G3P comme possible cause de la synthèse des isomères en C4 par cette enzyme. Ce résultat, ainsi que la decouverte d’un possible isomérisme cis-trans autour du lien C2-C3 de la base de Schiff formée avec le DHAP, identifié précedemment, permet de cerner presque complètement les particularités du mécanisme de cette enzyme et d’expliquer comment elle est capable de synthétiser les quatres stéréoisomères 3(S/R), 4(S/R). De plus, la résolution de ces structures a permis de mettre en évidence trois régions très mobiles de la protéine, ce qui pourrait être relié au rôle postulé de son isozyme chez S. pyogenes dans la régulation de l’expression génétique et de la virulence de la bactérie. Enfin, la résolution de la structure du mutant Lys229→Met de la FBP aldolase de muscle en complexe avec la forme cyclique du FBP, de même que des études cristallographiques sur le mutant équivalent Lys205→Met de la TBP aldolase de S. pyogenes et des expériences de calorimétrie ont permis d’identifier deux résidus particuliers, Ala31 et Asp33 chez la FBP aldolase, comme possible cause de la discrimination de cette enzyme contre les substrats 3(R) et 4(S), et ce par encombrement stérique des substrats cycliques. La cristallographie par rayons X et la cinétique enzymatique ont ainsi permis d'avancer dans l'élucidation du mécanisme et des propriétés structurales de cette enzyme aux caractéristiques particulières. / Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that shows a lack of stereospecificity that is rare in enzymes in general, and in aldolases in particular. This aldolase catalyzes the reversible cleavage of tagatose-1,6-bisphosphate (TBP), fructose-1,6-bisphosphate (FBP), sorbose-1,6-bisphosphate and psicose-1,6-bisphosphate, four stereoisomers, in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). A class I aldolase, the aldolase TBP S. pyogenes shares 14 % identity with the model enzyme of this family, mammalian FBP aldolase. Although the catalytic mechanism of the class I FBP aldolase has been examined in detail and it is appropriate to infer information as to the class I TBP aldolase, the singular lack of specificity of the latter enzyme both in the direction of cleavage and condensation is still not elucidated. To better comprehend the characteristics of the enzymatic mechanism, a structural study of the TBP aldolase of S. pyogenes, an extremely versatile human pathogen, has been undertaken. It has allowed the resolution of high resolution structures of the native and mutated enzyme in complex with subtrates and competitive inhibitors. These same structures allowed us to gain information as to the active site of the enzyme in general and the catalytic residues in particular. TBP aldolase native and mutated soaked in a saturated solution of FBP or TBP also trapped an iminium intermediate covalenty bound to Lys205, the Schiff base-forming lysine. The determination of the pH profiles of the native and mutated enzyme, carried out to assess the influence of pH on FBP and TBP cleavage and identify the residue(s) involved, in conjunction with the structural data provided by crystallography, identified unequivocally Glu163, corresponding to Glu187 in FBP aldolase, as the residue responsible for substrate cleavage. The substantially different binding mode of the ligands, according to the stereochemistry of their C3 and C4 carbons, indeed allows Glu163 to abstract the proton in C3-OH and thus initiate C3-C4 bond cleavage. The study of the inverse mechanism, the condensation one, using for instance the crystallographic structure of native TBP aldolase in complex with DHAP and G3P, its three carbons substrates, has led us to believe that a possible isomerism of the G3P substrate was the reason for the synthesis of both C4 isomers by this enzyme. This result, as well as the discovery of a possible cis-trans isomerism around the C2-C3 bond of the Schiff base formed with DHAP, identified previously, almost completely elucidated the features of this enzyme`s mechanism. In addition, these structures have highlighted three highly mobile regions of the protein, which may be related to the role of its isozyme in the regulation of gene expression and virulence in S. pyogenes. Lastly, the resolution of the structure of the FBP aldolase mutant Lys229 → Met in complex with the cyclic form of FBP, as well as crystallographic studies of the corresponding mutant in TBP aldolase, Lys205→Met and ITC experiments, allowed the identification of two particular residues, Ala31 and Asp33 in FBP aldolase, as responsible for this enzyme discrimination against 3(R) 4(S) substrates, by steric hindrance of the cyclic substrates. X-ray crystallography, enzyme kinetics and isothermal calorimetry thus enabled advances in the elucidation of the mechanism and structural properties of this enzyme with singular characteristics.

Page generated in 0.0758 seconds