• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stiffness Analysis of Cable-Driven Parallel Robots

Moradi, Amir 27 April 2013 (has links)
The aim of this thesis is the stiffness analysis of cable-driven parallel robots. Cable-driven parallel robots have drawn considerable attention because of their unique abilities and advantages such as the large workspace, light weight of cable actuators, easy disassembly and transportation of the robot. The mobile platform of a cable-driven parallel robot is attached to the base with multiple cables. One of the parameters that should be studied to make sure a robot is able to execute a task accurately is stiffness of the robot. In order to investigate the stiffness behaviour of a robot, the stiffness matrix can be calculated as the first step. Because cables act in tension, keeping the positive tension in cables becomes a challenge. In order to have a fully controllable robot, an actuation redundancy is needed. These complexities are addressed in the thesis and simulations. In this thesis, the complete form of the stiffness matrix is considered without neglecting any terms in calculation of the stiffness. Some stiffness indices such as single-dimensional stiffness based on stiffness ellipse, directional stiffness and condition number of the stiffness matrix are introduced and calculated and stiffness maps of the robot are developed. In addition, the issue of unit inconsistency in calculating the stiffness index is addressed. One of the areas which is also addressed in this thesis is failure analysis based on the stiffness of robot. The effect of the failure in one or more cables or motors is modelled and stiffness maps are developed for the failure situation. It is shown that by changing the anchor position and mobile platform orientation, the lost stiffness after failure of a cable or motor can be retrieved partially. Optimum anchor position and mobile platform orientation are identified to maximize the area of the stiffness map. Condition number of the stiffness matrix while robot is following a trajectory is optimized. In addition, when one cable fails during the path planning, the recovery of the robot is studied. Finally, these analyses on stiffness and failure provide the designer with the necessary and valuable information about the anchor positions and actuator toques. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2013-04-27 08:47:26.297
2

Design of 3-DOF parallel manipulators for micro-motion applications

Li, Jian 01 August 2009 (has links)
This thesis presents two unique micro-motion parallel kinematic manipulators (PKM): a three degrees of freedom (3-DOF) micro-motion manipulator and a 3-DOF micro-motion manipulator with actuation redundancy. The 3-DOF micro-motion manipulator has three linear-motion driving units, and the 3-DOF micro-motion manipulator with redundancy has four of these units. For both designs, the linear motion driving units are identical, and both machines have a passive link in the center of the structure. The purpose of this passive link is to restrain the movement of the manipulator and to improve the stiffness of the structure. As a result, both structures support 3-DOF, including one translation on the Z-axis and two rotations around the X and Y axes. The manipulator with redundancy is designed to prevent singularity and to improve stiffness. In this thesis, the inverse kinematic, Jacobian matrix and stiffness analyses have been conducted, followed by the design optimization for structures. Finally, the FEA (Finite Element Analysis) and dynamic analysis have also been performed. There are many practical applications for micro-motion parallel manipulators. The typical applications include micro-machine assembly, biological cell operation, and microsurgery . / UOIT
3

Stiffness and Strength of Fiber Reinforced Polymer Composite Bridge Deck Systems

Zhou, Aixi 07 November 2002 (has links)
This research investigates two principal characteristics that are of primary importance in Fiber Reinforced Polymer (FRP) bridge deck applications: STIFFNESS and STRENGTH. The research was undertaken by investigating the stiffness and strength characteristics of the multi-cellular FRP bridge deck systems consisting of pultruded FRP shapes. A systematic analysis procedure was developed for the stiffness analysis of multi-cellular FRP deck systems. This procedure uses the Method of Elastic Equivalence to model the cellular deck as an equivalent orthotropic plate. The procedure provides a practical method to predict the equivalent orthotropic plate properties of cellular FRP decks. Analytical solutions for the bending analysis of single span decks were developed using classical laminated plate theory. The analysis procedures can be extended to analyze continuous FRP decks. It can also be further developed using higher order plate theories. Several failure modes of the cellular FRP deck systems were recorded and analyzed through laboratory and field tests and Finite Element Analysis (FEA). Two schemes of loading patches were used in the laboratory test: a steel patch made according to the ASSHTO's bridge testing specifications; and a tire patch made from a real truck tire reinforced with silicon rubber. The tire patch was specially designed to simulate service loading conditions by modifying real contact loading from a tire. Our research shows that the effects of the stiffness and contact conditions of loading patches are significant in the stiffness and strength testing of FRP decks. Due to the localization of load, a simulated tire patch yields larger deflection than the steel patch under the same loading level. The tire patch produces significantly different failure compared to the steel patch: a local bending mode with less damage for the tire patch; and a local punching-shear mode for the steel patch. A deck failure function method is proposed for predicting the failure of FRP decks. Using developed laminated composite theories and FEA techniques, a strength analysis procedure containing ply-level information was proposed and detailed for FRP deck systems. The behavior of the deck's unsupported (free) edges was also investigated using ply-level FEA. / Ph. D.
4

Modeling and Analysis of Compliant Mechanisms for Designing Nanopositioners

Shi, Hongliang January 2013 (has links)
No description available.
5

Door closing sound quality related to door sealing stiffness

Derton, Riccardo January 2021 (has links)
The door closing action is a recurrent situation when using a vehicle, and its sound is therefore a common sensation, which would elicit pleasant feelings. Sensory pleasantness is an important aspect in terms of customer’s perspective, and it can be a contributing factor when deciding to buy or not a specific vehicle. The first contact between a prospective customer and the automobile usually happens in car salons or at the car retailer. The initial impression of the vehicle might be sight-based, and the door may commonly be the first physical contact. Depending on the car brand and type, doors differ in terms of mass, structure, dimension. Furthermore, there are differences regarding the latching system and the door sealing structure, in terms of material and construction. The closing sound produced when slamming the door is related to all these parameters. Auditory pleasantness can be described by characteristics of the sound that are described through psychoacoustics. Loudness, sharpness, roughness, and tonality are important auditory parameters to objectively describe this complex sensation. The aim of car doors would be to generate an enthusiastic, low-pitched, and saturated sound, which would elicit feelings of solidity, robustness, and security. On the other side, a metallic, high-pitched, fragmented sound could be a source of annoyance and produce feelings of insecurity and cheap vehicle.The present work aims to provide a broad picture on the mechanics and acoustics of door closing for automobiles. In specific, the closing sound was evaluated in relation to the door gaskets and their sealing performance over time. The sealing performance was analyzed in energy and force terms. The door closing motion was studied as a quasi-static problem, as well as a dynamic problem, where the former is related to the latching capability of the door, the latter is connected to the slamming action. The measurement results include the sealing performance trend from fresh to aged gaskets. From these measurements, the rubber non-linear behaviour could then be evaluated from a sound quality perspective. The acoustic analysis revealed inconsistencies of the psychoacoustic parameters in the description of the hearing sensations. Spectral analysis was also implemented to capture the door closing phenomenon, and the Wavelet transform emerged as the method with the highest resolution in the description of the sound wave progression.Several measurements were performed in order to assess all the established points, and methods were implemented for the sealing stiffness analysis and the acoustic analysis. The severe transiency of the door closing event was put in evidence. The stiffness analysis method showed also potential in helping to adjust the end of line tuning of the vehicle. Finally, benchmarking was included in the project, which enabled comparisons with competitor cars. / Dörrstängning är en återkommande händelse när ett fordon används, och ljudet bör därför ge ett positivt intryck och korrekt information till brukaren. Ett behagligt intryck är en viktig aspekt ur kundens perspektiv och kan vara ett var flera bidragande faktorer när beslut tas om att köpa eller inte köpa ett fordon. Den första kontakten mellan en potentiell kund och bilen sker vanligtvis i bilsalonger eller hos bilhandlare. Det första intrycket av fordonet kan vara visuellt, och dörren är ofta den första fysiska kontakten. Beroende på biltyp och fabrikat skiljer sig dörrarna åt när det kommer till massa, struktur och dimensioner. Dessutom kan det finnas skillnader i låssystem och dörrtätningskonstruktion såsom i både material och utformning. Stängningsljudet som uppstår när dörren slås igen är relaterat till alla dessa parametrar. Ett ljuds upplevda behaglighet i det beror på ljudets egenskaper, som beskrivs med hjälp av psykoakustik. Ljudstyrka, skärpa, råhet och tonalitet är viktiga auditiva parametrar för att objektivt beskriva detta komplexa intryck. Målet med bildörrar bör vara att generera ett dovt och mättat ljud, för att framkalla känslor av soliditet, robusthet och säkerhet. Å andra sidan kan, ett metalliskt, högfrekvent och skramligt ljud vara en källa till irritation och ge känslor av osäkerhet och låg kvalité.Syftet med detta arbete är att ge en övergripande beskrivning av dörrstängning och akustiken kring detta. I synnerhet utvärderades stängningsljudet i förhållande till dörrpackningarna och deras tätningsprestanda mätt över tiden. Tätningsprestanda analyserades i energi- och krafttermer. Dörrens stängningsrörelse studerades både som ett kvasistatiskt problem och som ett dynamiskt problem. Det förstnämnda är relaterat till dörrens låsningsförmåga, medan det sistnämnda är kopplat till smällar i dörren. Mätresultaten visade hur tätningsprestandan förändras över tiden. Gummits icke-linjära beteende har också utvärderats med ett ljudkvalitetsperspektiv. En spektralanalys genomfördes av ljudet från dörrstängningar och Wavelet-transformen visade sig vara den lösning som gav bäst kvalitet. Flera mätningar utfördes för att bedöma alla fastställda punkter och metoder infördes för analysen av tätningens styvhet och för den akustiska analysen. Den kraftiga transiensen i dörrstängningen kunde ses i resultaten. Styvhetsanalysen visade även hur den utvecklade metoden skulle kunna bidra till att justera fordonets end-of-line inställningar. Slutligen ingick benchmarking i projektet vilket möjliggjorde jämförelser med konkurrentbilar.

Page generated in 0.0741 seconds