Spelling suggestions: "subject:"estimulus delivery"" "subject:"astimulus delivery""
1 |
Immediate and subsequent effects of fixed-time food presentations on automatically maintained mouthing.Simmons, Jason N. 12 1900 (has links)
Several studies have demonstrated that fixed-time (FT) schedules of stimulus delivery can function to reduce a variety of behaviors. The purpose of this study was to evaluate the immediate and subsequent effects of FT food deliveries on mouthing. In Phase 1, a preference assessment showed that caramel popcorn, chocolate cookies and pretzels were highly preferred food items. Thus, providing the basis for use of food items during treatment. In Phase 2, a functional analysis showed that mouthing was a nonsocially maintained problem behavior. Phase 3 demonstrated the use of FT schedules of food deliveries as treatment for nonsocially maintained mouthing. Results indicated that FT schedules of food significantly reduced mouthing. In addition, levels of mouthing observed during post-FT observations were reliably lower than pre-FT observations. Treatment effects, operative mechanisms responsible for the treatment effects and the experimental arrangement used to investigate varying FT schedules are discussed.
|
2 |
Time frequency analysis of olfactory induced EEG-power changeSchriever, Valentin Alexander, Han, Penfei, Weise, Stefanie, Hösel, Franziska, Pellegrino, Robert, Hummel, Thomas 18 December 2017 (has links) (PDF)
Objectives
The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA) of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function.
Materials & methods
A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects.
Results
Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%). In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III.
Conclusions
Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.
|
3 |
Time frequency analysis of olfactory induced EEG-power changeSchriever, Valentin Alexander, Han, Penfei, Weise, Stefanie, Hösel, Franziska, Pellegrino, Robert, Hummel, Thomas 18 December 2017 (has links)
Objectives
The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA) of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function.
Materials & methods
A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects.
Results
Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%). In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III.
Conclusions
Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.
|
Page generated in 0.0592 seconds