Spelling suggestions: "subject:"stochastic mortality"" "subject:"ctochastic mortality""
1 |
Essays on Lifetime Uncertainty: Models, Applications, and Economic ImplicationsZhu, Nan 07 August 2012 (has links)
My doctoral thesis “Essays on Lifetime Uncertainty: Models, Applications, and Economic Implications” addresses economic and mathematical aspects pertaining to uncertainties in human lifetimes. More precisely, I commence my research related to life insurance markets in a methodological direction by considering the question of how to forecast aggregate human mortality when risks in the resulting projections is important. I then rely on the developed method to study relevant applied actuarial problems. In a second strand of research, I consider the uncertainty in individual lifetimes and its influence on secondary life insurance market transactions.
Longevity risk is becoming increasingly crucial to recognize, model, and monitor for life insurers, pension plans, annuity providers, as well as governments and individuals. One key aspect to managing this risk is correctly forecasting future mortality improvements, and this topic has attracted much attention from academics as well as from practitioners. However, in the existing literature, little attention has been paid to accurately modeling the uncertainties associated with the obtained forecasts, albeit having appropriate estimates for the risk in mortality projections, i.e. identifying the transiency of different random sources affecting the projections, is important for many applications.
My first essay “Coherent Modeling of the Risk in Mortality Projections: A Semi-Parametric Approach” deals with stochastically forecasting mortality. In contrast to previous approaches, I present the first data-driven method that focuses attention on uncertainties in mortality projections rather than uncertainties in realized mortality rates. Specifically, I analyze time series of mortality forecasts generated from arbitrary but fixed forecasting methodologies and historic mortality data sets. Building on the financial literature on term structure modeling, I adopt a semi-parametric representation that encompasses all models with transitions parameterized by a Normal distributed random vector to identify and estimate suitable specifications. I find that one to two random factors appear sufficient to capture most of the variation within all of our data sets. Moreover, I observe similar systematic shapes for their volatility components, despite stemming from different forecasting methods and/or different mortality data sets. I further propose and estimate a model variant that guarantees a non-negative process of the spot force of mortality. Hence, the resulting forward mortality factor models present parsimonious and tractable alternatives to the popular methods in situations where the appraisal of risks within medium or long-term mortality projections plays a dominant role.
Relying on a simple version of the derived forward mortality factor models, I take a closer look at their applications in the actuarial context in the second essay “Applications of Forward Mortality Factor Models in Life Insurance Practice. In the first application, I derive the Economic Capital for a stylized UK life insurance company offering traditional product lines. My numerical results illustrate that (systematic) mortality risk plays an important role for a life insurer's solvency. In the second application, I discuss the valuation of different common mortality-contingent embedded options within life insurance contracts. Specifically, I present a closed-form valuation formula for Guaranteed Annuity Options within traditional endowment policies, and I demonstrate how to derive the fair option fee for a Guaranteed Minimum Income Benefit within a Variable Annuity Contract based on Monte Carlo simulations. Overall my results exhibit the advantages of forward mortality factor models in terms of their simplicity and compatibility with classical life contingencies theory.
The second major part of my doctoral thesis concerns the so-called life settlement market, i.e. the secondary market for life insurance policies. Evolving from so-called “viatical settlements” popular in the late 1980s that targeted severely ill life insurance policyholders, life settlements generally involve senior insureds with below average life expectancies. Within such a transaction, both the liability of future contingent premiums and the benefits of a life insurance contract are transferred from the policyholder to a life settlement company, which may further securitize a bundle of these contracts in the capital market.
One interesting and puzzling observation is that although life settlements are advertised as a high-return investment with a low “Beta”, the actual market systematically underperformed relative to expectations. While the common explanation in the literature for this gap between anticipated and realized returns falls on the allegedly meager quality of the underlying life expectancy estimates, my third essay “Coherent Pricing of Life Settlements under Asymmetric Information” proposes a different viewpoint: The discrepancy may be explained by adverse selection. Specifically, by assuming information with respect to policyholders’ health states is asymmetric, my model shows that a discrepancy naturally arises in a competitive market when the decision to settle is taken into account for pricing the life settlement transaction, since the life settlement company needs to shift its pricing schedule in order to balance expected profits. I derive practically applicable pricing formulas that account for the policyholder’s decision to settle, and my numerical results reconfirm that---depending on the parameter choices---the impact of asymmetric information on pricing may be considerable. Hence, my results reveal a new angle on the financial analysis of life settlements due to asymmetric information.
Hence, all in all, my thesis includes two distinct research strands that both analyze certain economic risks associated with the uncertainty of individuals’ lifetimes---the first at the aggregate level and the second at the individual level. My work contributes to the literature by providing both new insights about how to incorporate lifetime uncertainty into economic models, and new insights about what repercussions---that are in part rather unexpected---this risk factor may have.
|
2 |
The stochastic mortality modeling and the pricing of mortality/longevity linked derivativesChuang, Shuo-Li 01 September 2015 (has links)
The Lee-Carter mortality model provides the very first model for modeling the mortality rate with stochastic time and age mortality dynamics. The model is constructed modeling the mortality rate to incorporate both an age effect and a period effect. The Lee-Carter model provides the fundamental set up currently used in most modern mortality modeling. Various extensions of the Lee-Carter model include either adding an extra term for a cohort effect or imposing a stochastic process for mortality dynamics. Although both of these extensions can provide good estimation results for the mortality rate, applying them for the pricing of the mortality/ longevity linked derivatives is not easy. While the current stochastic mortality models are too complicated to be explained and to be implemented, transforming the cohort effect into a stochastic process for the pricing purpose is very difficult. Furthermore, the cohort effect itself sometimes may not be significant. We propose using a new modified Lee-Carter model with a Normal Inverse Gaussian (NIG) Lévy process along with the Esscher transform for the pricing of mortality/ longevity linked derivatives. The modified Lee-Carter model, which applies the Lee-Carter model on the growth rate of mortality rates rather than the level of mortality rates themselves, performs better than the current mortality rate models shown in Mitchell et al (2013). We show that the modified Lee-Carter model also retains a similar stochastic structure to the Lee-Carter model, so it is easy to demonstrate the implication of the model. We proposed the additional NIG Lévy process with Esscher transform assumption that can improve the fit and prediction results by adapting the mortality improvement rate. The resulting mortality rate matches the observed pattern that the mortality rate has been improving due to the advancing development of technology and improvements in the medical care system. The resulting mortality rate is also developed under a martingale measure so it is ready for the direct application of pricing the mortality/longevity linked derivatives, such as q-forward, longevity bond, and mortality catastrophe bond. We also apply our proposed model along with an information theoretic optimization method to construct the pricing procedures for a life settlement. While our proposed model can improve the mortality rate estimation, the application of information theory allows us to incorporate the private health information of a specific policy holder and hence customize the distribution of the death year distribution for the policy holder so as to price the life settlement. The resulting risk premium is close to the practical understanding in the life settlement market.
|
3 |
Trading mortalitySimpson, Nathaniel 26 June 2012 (has links)
This dissertation sets out to describe a set of financial instruments whose cash flows are driven by the movements in some underlying population's mortality rates. For example, a longevity bond where the coupons are determined with reference to the proportion of the initial population that are alive at the coupon date. Other examples include mortality swaps and mortality swaptions which are analogous to interest rate swaps and interest rate swaptions. It also aims to show there are risks associated with mortality and that these mortality driven instruments can be used to manage some of these risks. These instruments should also enable portfolios that replicate mortality driven cash ows to be constructed. This would in turn allow the market consistent valuation of these cash flows. To construct a pricing framework for these mortality based instruments a stochastic mortality model is needed. In this dissertation the stochastic mortality model used was the Lee-Carter model. The Lee-Carter model in essence models mortality rates per age by calendar year or cohort year using Time Series techniques. Copyright / Dissertation (MSc)--University of Pretoria, 2012. / Mathematics and Applied Mathematics / unrestricted
|
4 |
應用Nelson-Siegel系列模型預測死亡率-以英國為例宮可倫 Unknown Date (has links)
無 / Existing literature has shown that force of mortality has amazing resemblance of interest rate. It is then tempting to extend existing model of interest rate model context to mortality modeling. We apply the model in Diebold and Li (2006) and other models that belong to family of yield rate model originally proposed by Nelson and Siegel (1987) to forecast (force of) mortality term structure. The fitting performance of extended Nelson-Siegel model is comparable to the benchmark Lee-Carter model. While forecasting performance is no better than Lee-Carter model in younger ages, it is at the same level in elder ages. The forecasting performance increases for 5-year ahead forecast is better than 1-year ahead comparing to Lee-Carter forecast. In the end, the forecast outperforms Lee-Carter model when age dimension is trimmed to age 20-100.
|
5 |
Valuation Of Life Insurance Contracts Using Stochastic Mortality Rate And Risk Process ModelingCetinkaya, Sirzat 01 February 2007 (has links) (PDF)
In life insurance contracts, actuaries generally value premiums using deterministic mortality rates and interest rates. They have ignored them stochastically in most of the studies. However it is known that neither interest rates nor mortality rates are constant. It is also known that companies may encounter insolvency problems such as ruin, so the ruin probability need to be added to the valuation of the life insurance contracts process. Insurance companies should model their surplus processes to price some types of life insurance contracts and to see risk position. In this study, mortality rates and surplus processes are modeled and
financial strength of companies are utilized when pricing life insurance contracts.
|
6 |
Stochastické modelování úmrtnosti pro více populací / Stochastic mortality modeling for multiple populationsSkřivanová, Zuzana January 2016 (has links)
Title: Stochastic mortality modelling for multiple populations Abstract: This thesis deals with the possibilities of modelling and forecasting of age-specific mortality rates. The introductory part summarizes the basic terms from demo- graphy, which are related to mortality, and specifies elementary approaches to the mortality modelling. Subsequently there are in detail described the three most commonly used stochastic mortality models - Lee-Carter, Renshaw-Haberman and Cairns-Blake-Dowd. The fundamental part of this thesis deals with the possi- bilities of using these models for mortality modelling simultaneously in correlated populations. These theoretical bases are in the final part of this thesis numerically illustrated on the mortality models for populations of Czech and Slovak Republic. 1
|
7 |
厚尾分配在財務與精算領域之應用 / Applications of Heavy-Tailed distributions in finance and actuarial science劉議謙, Liu, I Chien Unknown Date (has links)
本篇論文將厚尾分配(Heavy-Tailed Distribution)應用在財務及保險精算上。本研究主要有三個部分:第一部份是用厚尾分配來重新建構Lee-Carter模型(1992),發現改良後的Lee-Carter模型其配適與預測效果都較準確。第二部分是將厚尾分配建構於具有世代因子(Cohort Factor)的Renshaw and Haberman模型(2006)中,其配適及預測效果皆有顯著改善,此外,針對英格蘭及威爾斯(England and Wales)訂價長壽交換(Longevity Swaps),結果顯示此模型可以支付較少的長壽交換之保費以及避免低估損失準備金。第三部分是財務上的應用,利用Schmidt等人(2006)提出的多元仿射廣義雙曲線分配(Multivariate Affine Generalized Hyperbolic Distributions; MAGH)於Boyle等人(2003)提出的低偏差網狀法(Low Discrepancy Mesh; LDM)來定價多維度的百慕達選擇權。理論上,LDM法的數值會高於Longstaff and Schwartz(2001)提出的最小平方法(Least Square Method; LSM)的數值,而數值分析結果皆一致顯示此性質,藉由此特性,我們可知道多維度之百慕達選擇權的真值落於此範圍之間。 / The thesis focus on the application of heavy-tailed distributions in finance and actuarial science. We provide three applications in this thesis. The first application is that we refine the Lee-Carter model (1992) with heavy-tailed distributions. The results show that the Lee-Carter model with heavy-tailed distributions provide better fitting and prediction. The second application is that we also model the error term of Renshaw and Haberman model (2006) using heavy-tailed distributions and provide an iterative fitting algorithm to generate maximum likelihood estimates under the Cox regression model. Using the RH model with non-Gaussian innovations can pay lower premiums of longevity swaps and avoid the underestimation of loss reserves for England and Wales. The third application is that we use multivariate affine generalized hyperbolic (MAGH) distributions introduced by Schmidt et al. (2006) and low discrepancy mesh (LDM) method introduced by Boyle et al. (2003), to show how to price multidimensional Bermudan derivatives. In addition, the LDM estimates are higher than the corresponding estimates from the Least Square Method (LSM) of Longstaff and Schwartz (2001). This is consistent with the property that the LDM estimate is high bias while the LSM estimate is low bias. This property also ensures that the true option value will lie between these two bounds.
|
Page generated in 0.0982 seconds